基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对民航发动机修后排气温度裕度预测过程中的多源异构数据融合问题,提出了卷积自编码器与极端梯度提升模型结合的方法.利用所提出的条件熵增长因子规整发动机修前多元传感器参数序列中的参数排序,采用卷积自编码器提取规整后的参数序列和维修工作范围的数据特征,并将其与发动机使用时间信息组成合成特征以训练极端梯度提升模型,从而预测发动机修后性能并评估各影响因素的重要程度.经发动机机队维修案例验证,所提方法预测精度高于单维参数序列预测方法,对发动机修后排气温度的平均相对预测误差不高于8.3%.
推荐文章
多源统计数据驱动的航空发动机剩余寿命预测方法
剩余寿命
航空发动机
概率密度函数
统计数据驱动
基于 KPCA-BLSTM 的航空发动机多信息融合剩余寿命预测
航空发动机
剩余寿命
多信息融合
双向长短时记忆
核主成分分析
基于数据包络分析的民航发动机维修效果评价
航空发动机
维修效果
数据包络分析
承修厂
评价指标
基于深度信念网络的民航发动机状态监测
发动机状态
深度学习理论
大数据处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 多源数据融合的民航发动机修后性能预测
来源期刊 北京航空航天大学学报 学科 工学
关键词 航空发动机 发动机维修决策 修后性能预测 特征提取 多源数据融合
年,卷(期) 2019,(6) 所属期刊栏目
研究方向 页码范围 1106-1113
页数 8页 分类号 TP391|V267|V235.13+3
字数 5580字 语种 中文
DOI 10.13700/j.bh.1001-5965.2018.0557
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林琳 哈尔滨工业大学机电工程学院 36 515 12.0 22.0
2 钟诗胜 哈尔滨工业大学机电工程学院 152 1861 24.0 32.0
3 谭治学 哈尔滨工业大学机电工程学院 3 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (25)
共引文献  (8)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(2)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
航空发动机
发动机维修决策
修后性能预测
特征提取
多源数据融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
北京航空航天大学学报
月刊
1001-5965
11-2625/V
大16开
北京市海淀区学院路37号
1956
chi
出版文献量(篇)
6912
总下载数(次)
23
总被引数(次)
69992
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导