为解决油层识别中存在的获得有标记数据的代价过高,有标记数据稀少的问题,提出一种新的基于分支定界的半监督支持向量机(branch and bound for semi-supervised support vector machine,BBS3VM)的油层识别方法.此方法主要将半监督学习(semi-supervised learning,SSL)和分支定界的思想引入到支持向量机(support vector ma-chine,SVM)分类算法中.通过半监督学习的思想,使用大量未标记的样本来改善学习性能,利用分支定界算法提高半监督支持向量机(semi-supervised support vector machine,S3VM)算法的分类精度,将此改进算法应用于测井数据挖掘中的油层识别.经过对某油田的实际测井资料进行处理,实验结果表明,半监督油层识别方法要优于传统的S3VM分类算法,识别率更高,分类效果更显著,与全监督的SVM算法相比较,得到相差不大的分类精度的同时,速度更快.