钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
大学学报期刊
\
浙江大学学报(工学版)期刊
\
基于CNN特征提取的双焦相机连续数字变焦
基于CNN特征提取的双焦相机连续数字变焦
作者:
冯华君
徐之海
李奇
赫贵然
陈跃庭
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
非对称双焦镜头
连续数字变焦
卷积神经网络(CNN)
特征提取
超分辨成像
图像恢复
摘要:
设计一种主要针对智能手机双焦镜头的连续数字变焦方案.该方案基于卷积神经网络特征层提取和特征块匹配,充分利用2个不同焦距镜头的拍摄信息,将长焦镜头图像的高分辨信息迁移到短焦图像的可修复区域,并以修复后的短焦图像为基础进行数字变焦.仿真和实验结果表明,相比基于传统插值放大的变焦方案和基于单图像超分辨的变焦方案,所提方案的处理结果拥有更高的主观分辨率和视觉清晰度;当用户给定的变焦倍数在长、短焦镜头倍数之间时,所提方案可以显著提升变焦图像的质量;对于处于长焦相机视场外、短焦相机视场内的纹理,修复效果比现有方法更好;该方法的处理结果对长焦、短焦图像的双目视差大小有着很好的鲁棒性.
暂无资源
收藏
引用
分享
推荐文章
基于CNN-LSTM的QAR数据特征提取与预测
深度学习
融合卷积神经网络
长短时记忆网络
特征提取
时间序列预测
一种融合AutoEncoder与CNN的混合算法用于图像特征提取
深度学习
卷积神经网络
自动编码器
滤波
稀疏控制
基于自编码特征提取及弹性学习的手写数字识别
多层前向神经网络
自编码算法
弹性BP算法
MNIST数据库
基于双空间特征提取的变压器故障诊断模型
故障诊断
双空间算法
特征提取
多核学习
支持向量机
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于CNN特征提取的双焦相机连续数字变焦
来源期刊
浙江大学学报(工学版)
学科
工学
关键词
非对称双焦镜头
连续数字变焦
卷积神经网络(CNN)
特征提取
超分辨成像
图像恢复
年,卷(期)
2019,(6)
所属期刊栏目
计算机与自动化技术
研究方向
页码范围
1182-1189
页数
8页
分类号
TP751.1
字数
4791字
语种
中文
DOI
10.3785/j.issn.1008-973X.2019.06.018
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
冯华君
浙江大学光电科学与工程学院
145
2098
25.0
41.0
2
徐之海
浙江大学光电科学与工程学院
132
1897
23.0
39.0
3
李奇
浙江大学光电科学与工程学院
108
1760
23.0
39.0
4
陈跃庭
浙江大学光电科学与工程学院
51
297
9.0
15.0
5
赫贵然
浙江大学光电科学与工程学院
1
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(7)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
2004(1)
参考文献(1)
二级参考文献(0)
2009(1)
参考文献(1)
二级参考文献(0)
2010(1)
参考文献(1)
二级参考文献(0)
2016(1)
参考文献(1)
二级参考文献(0)
2017(1)
参考文献(1)
二级参考文献(0)
2018(1)
参考文献(1)
二级参考文献(0)
2019(1)
参考文献(1)
二级参考文献(0)
2019(1)
参考文献(1)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
非对称双焦镜头
连续数字变焦
卷积神经网络(CNN)
特征提取
超分辨成像
图像恢复
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
主办单位:
浙江大学
出版周期:
月刊
ISSN:
1008-973X
CN:
33-1245/T
开本:
大16开
出版地:
杭州市浙大路38号
邮发代号:
32-40
创刊时间:
1956
语种:
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
期刊文献
相关文献
1.
基于CNN-LSTM的QAR数据特征提取与预测
2.
一种融合AutoEncoder与CNN的混合算法用于图像特征提取
3.
基于自编码特征提取及弹性学习的手写数字识别
4.
基于双空间特征提取的变压器故障诊断模型
5.
基于Fisher的Gabor特征提取方法
6.
基于高阶谱的战场声目标特征提取
7.
数字移动通信中的无线信道“指纹”特征提取
8.
主成份分析在数字图像特征提取中的应用
9.
基于BLOB的积木特征提取算法
10.
基于DEM的流域特征提取综述
11.
基于小波变换的运动目标特征提取
12.
基于人体碎片的特征提取算法研究
13.
基于DEM的流域特征提取方法研究进展
14.
基于小波包分解的声信号特征提取方法
15.
基于GPU的SIFT特征提取算法研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
浙江大学学报(工学版)2022
浙江大学学报(工学版)2021
浙江大学学报(工学版)2020
浙江大学学报(工学版)2019
浙江大学学报(工学版)2018
浙江大学学报(工学版)2017
浙江大学学报(工学版)2016
浙江大学学报(工学版)2015
浙江大学学报(工学版)2014
浙江大学学报(工学版)2013
浙江大学学报(工学版)2012
浙江大学学报(工学版)2011
浙江大学学报(工学版)2010
浙江大学学报(工学版)2009
浙江大学学报(工学版)2008
浙江大学学报(工学版)2007
浙江大学学报(工学版)2006
浙江大学学报(工学版)2005
浙江大学学报(工学版)2004
浙江大学学报(工学版)2003
浙江大学学报(工学版)2002
浙江大学学报(工学版)2001
浙江大学学报(工学版)2000
浙江大学学报(工学版)2019年第9期
浙江大学学报(工学版)2019年第8期
浙江大学学报(工学版)2019年第7期
浙江大学学报(工学版)2019年第6期
浙江大学学报(工学版)2019年第5期
浙江大学学报(工学版)2019年第4期
浙江大学学报(工学版)2019年第3期
浙江大学学报(工学版)2019年第2期
浙江大学学报(工学版)2019年第12期
浙江大学学报(工学版)2019年第11期
浙江大学学报(工学版)2019年第10期
浙江大学学报(工学版)2019年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号