基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高港口吞吐量预测模型的适用性,满足港口决策的需求,对传统时间序列BP神经网络预测模型进行改进,将未来三年的吞吐量作为输出层参数,以tansig函数和logsig函数为传递函数,建立了改进型时间序列BP神经网络预测模型,利用trainlm函数训练神经网络,预测未来三年的港口吞吐量.对深圳港集装箱吞吐量进行了预测,结果表明,改进型时间序列BP神经网络模型泛化能力更强,拟合精度更高,且避免了传统预测模型循环预测产生的误差叠加,具有较好的适用性.
推荐文章
基于NARX神经网络的港口集装箱吞吐量预测
NARX神经网络
集装箱吞吐量
主成分分析
动态预测
基于BP神经网络的港口货物吞吐量预测
BP神经网络
货物吞吐量
预测
基于改进型BP神经网络的电网负荷预测
电网负荷预测
BP神经网络
模拟退火优化算法
预测误差
机场旅客吞吐量的人工神经网络预测方法
机场旅客吞吐量
预测
人工神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进型BP神经网络的港口吞吐量预测
来源期刊 集美大学学报(自然科学版) 学科 交通运输
关键词 港口吞吐量 时间序列 BP神经网络 预测模型
年,卷(期) 2019,(5) 所属期刊栏目 航海技术与物流工程
研究方向 页码范围 352-357
页数 6页 分类号 U691.71
字数 3324字 语种 中文
DOI 10.19715/j.jmuzr.2019.05.05
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 兰培真 集美大学海上交通安全研究所 46 321 9.0 15.0
5 陈锦文 集美大学海上交通安全研究所 4 6 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (47)
参考文献  (11)
节点文献
引证文献  (2)
同被引文献  (13)
二级引证文献  (0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(8)
  • 参考文献(2)
  • 二级参考文献(6)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(2)
  • 引证文献(2)
  • 二级引证文献(0)
研究主题发展历程
节点文献
港口吞吐量
时间序列
BP神经网络
预测模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
集美大学学报(自然科学版)
双月刊
1007-7405
35-1186/N
大16开
福建厦门集美银江路185号
1996
chi
出版文献量(篇)
1788
总下载数(次)
5
总被引数(次)
8910
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导