基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 针对手动设计的手指静脉质量特征计算过程复杂、鲁棒性差、表达效果不理想等问题,提出了基于级联优化CNN(卷积神经网络)进行多特征融合的手指静脉质量评估方法.方法 以半自动化方式对手指静脉公开数据库MMCBNU_6000进行质量标注并用R-SMOTE(radom-synthetic minority over-sampling technique)算法平衡类别;将深度学习中的CNN结构应用到手指静脉质量评估并研究了不同的网络深度对表征手指静脉质量的影响;受到传统方法中将二值图像和灰度图像结合进行质量评估的启发,设计了两种融合灰度图像和二值图像的质量特征的模型:多通道CNN(MC-CNN)和级联优化CNN(CF-CNN),MC-CNN在训练和测试时均需要同时输入二值图像和灰度图像,CF-CNN在训练时分阶段输入二值图像和灰度图像,测试时只需输入灰度图像.结果 本文设计的3种简单CNN结构(CNN-K,K=3,4,5)在MMCBNU_6000数据库上对测试集图像的分类正确率分别为93.31%、93.94%、85.63%,以灰度图像和二值图像分别作为CNN-4的输入在MMCBNU_6000数据库上对测试集图像的分类正确率对应为93.94%、91.92%,MC-CNN和CF-CNN在MMCBNU_6000数据库上对测试集图像的分类正确率分别为91.44%、94.62%,此外,与现有的其他算法相比,CF-CNN在MMCBNU_6000数据库上对高质量测试图像、低质量测试图像、整体测试集图像的分类正确率均最高.结论 实验结果表明,基于CF-CNN学习到的融合质量特征比现有的手工特征和基于单一静脉形式学习到的特征表达效果更好,可以有效地对手指静脉图像进行高、低质量的区分.
推荐文章
手指静脉图像小波增强算法
手指静脉
小波变换
图像增强
傅里叶变换
手指静脉图像鲁棒边缘检测算法
图像处理
图像分割
手指静脉识别
边缘检测
鲁棒
基于手指静脉特征图像的加密研究
手指静脉特征图像
加密
移动互联
手指静脉图像质量评价
静脉图像
图像质量评价
有效区域
对比度
位置偏移度
模糊度
信息熵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 级联优化CNN的手指静脉图像质量评估
来源期刊 中国图象图形学报 学科 工学
关键词 手指静脉质量评估 卷积神经网络 特征融合 多通道CNN 级联优化CNN
年,卷(期) 2019,(6) 所属期刊栏目 图像分析和识别
研究方向 页码范围 902-913
页数 12页 分类号 TP301.6
字数 7380字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 甘俊英 五邑大学信息工程学院 82 871 14.0 26.0
2 秦传波 五邑大学信息工程学院 16 25 3.0 4.0
3 曾军英 五邑大学信息工程学院 23 58 5.0 7.0
4 翟懿奎 五邑大学信息工程学院 25 110 7.0 9.0
5 谌瑶 五邑大学信息工程学院 6 6 1.0 2.0
6 冯武林 五邑大学信息工程学院 4 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (12)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(3)
  • 参考文献(3)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手指静脉质量评估
卷积神经网络
特征融合
多通道CNN
级联优化CNN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导