基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在金融领域的资产定价模型修正过程中,股市的非线性现象往往被选择性忽视,未纳入模型框架,现有模型亦无法刻画因子之间的非线性定价结构.为解决上述问题,引入了机器学习领域中的神经网络模型,以捕获市场组合收益率、市值、账面市值比三因子间的非线性定价结构,并对股票收益率进行预测.将该模型与经典Fama-French三因子模型在样本外拟合优度、多空策略业绩表现上做了对比,结果表明:神经网络模型能精准捕获市场组合收益率、市值、账面市值比3个因子之间的非线性关系,且在样本外拟合优度、多空策略业绩表现上均要优于传统三因子线性定价模型.
推荐文章
基于灰色神经网络的股票收益率预测
股票收益率预测
灰色神经网络
灰色GM(1,N)预测模型
技术分析
基于改进的随机森林算法股票收益率预测研究
粒子群
随机森林
股票收益率
特征选择
股票指数收益率分布研究
股指收益率
正态性检验
高斯混合分布
EM算法
基于神经网络的股票预测系统研究
多层前馈神经网络
粗集理论
属性约简
遗传算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的股票收益率预测研究
来源期刊 浙江大学学报(理学版) 学科 数学
关键词 机器学习 非线性资产定价 神经网络
年,卷(期) 2019,(5) 所属期刊栏目 数学与计算机科学
研究方向 页码范围 550-555
页数 6页 分类号 O212
字数 5092字 语种 中文
DOI 10.3785/j.issn.1008-9497.2019.05.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王一鸣 北京大学经济学院 77 379 11.0 18.0
2 潘水洋 北京大学经济学院 6 15 3.0 3.0
3 刘俊玮 北京大学经济学院 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (83)
共引文献  (61)
参考文献  (15)
节点文献
引证文献  (3)
同被引文献  (8)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1966(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(3)
  • 参考文献(0)
  • 二级参考文献(3)
1983(2)
  • 参考文献(0)
  • 二级参考文献(2)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(3)
  • 参考文献(0)
  • 二级参考文献(3)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(2)
  • 参考文献(1)
  • 二级参考文献(1)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(4)
  • 参考文献(1)
  • 二级参考文献(3)
2009(3)
  • 参考文献(1)
  • 二级参考文献(2)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(5)
  • 参考文献(1)
  • 二级参考文献(4)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器学习
非线性资产定价
神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(理学版)
双月刊
1008-9497
33-1246/N
大16开
杭州市天目山路148号浙江大学
32-36
1956
chi
出版文献量(篇)
3051
总下载数(次)
2
总被引数(次)
24460
论文1v1指导