基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对当前神经网络声学建模中数据混用困难的问题,文中提出了一种基于听感量化编码的神经网络语音合成方法.通过设计听感量化编码模型学习海量语音在音色、语种、情感上的不同差异表征,构建统一的多人数据混合训练的神经网络声学模型.在统一的听感量化编码声学模型内通过数据共享和迁移学习,可以显著降低合成系统搭建的数据量要求,并实现对合成语音的音色、语种、情感等属性的有效控制.提升了神经网络语音合成的质量和灵活性,一小时数据构建语音合成系统自然度可达到4.0MOS分,达到并超过普通说话人水平.
推荐文章
语音编码中的递归神经网络技术研究
线谱对系数
谱插值
递归神经网络
基于循环神经网络的语音识别研究
语音识别
循环神经网络
反向传播算法
特征提取
小波变换
HMM模型
BP神经网络
基于深度学习神经网络的孤立词语音识别的研究
语音识别
人工神经网络
深度学习
自编码器
规整网络
基于小波混沌神经网络的语音识别
语音识别
小波变换
混沌
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于听感量化编码的神经网络语音合成方法研究
来源期刊 电子科技 学科 工学
关键词 语音合成 听感量化编码 神经网络 少数据量合成 跨语种合成 情感控制
年,卷(期) 2019,(9) 所属期刊栏目
研究方向 页码范围 76-79
页数 4页 分类号 TN912.33
字数 3865字 语种 中文
DOI 10.16180/j.cnki.issn1007-7820.2019.09.016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘庆峰 2 1 1.0 1.0
2 江源 1 0 0.0 0.0
3 胡亚军 1 0 0.0 0.0
4 刘利娟 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语音合成
听感量化编码
神经网络
少数据量合成
跨语种合成
情感控制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子科技
月刊
1007-7820
61-1291/TN
大16开
西安电子科技大学
1987
chi
出版文献量(篇)
9344
总下载数(次)
32
总被引数(次)
31437
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导