基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统模糊聚类算法需提前设置参数和初始聚类中心,导致聚类结果不稳定的问题,提出一种基于权重差异度的动态模糊聚类算法.首先引入样本特征权重向量和样本间差异度的概念,对数据集分布情况进行描述,并采用新的评价指标获取候选聚类中心;然后根据最小差异度准则,对剩余样本点进行分类;最后结合Davies-Bouldin指数(DBI)评价准则对候选聚类中心做进一步筛选与合并.实验结果表明,该算法在不同测试数据集上的性能明显优于传统聚类算法,具有更高的自适应性和稳定性.
推荐文章
基于自适应权重的模糊C-均值聚类算法
模糊C-均值聚类算法
自适应权重
高斯距离
隶属矩阵
基于自适应权重的RFC M聚类算法
聚类
自适应
权重
粗糙集
模糊集
均衡因子
基于 BA 的模糊聚类算法研究
蝙蝠算法
模糊C均值聚类
BAFCM
优化
一种免疫动态模糊聚类算法
人工免疫
克隆选择
聚类有效性分析
动态聚类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于权重差异度的动态模糊聚类算法
来源期刊 吉林大学学报(理学版) 学科 工学
关键词 模糊聚类算法 权重向量 差异度 Davies-Bouldin指数 自适应
年,卷(期) 2019,(3) 所属期刊栏目 计算机科学
研究方向 页码范围 574-582
页数 9页 分类号 TP311.13
字数 5832字 语种 中文
DOI 10.13413/j.cnki.jdxblxb.2018196
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘三阳 西安电子科技大学数学与统计学院 662 5562 32.0 51.0
2 刘良凤 西安电子科技大学数学与统计学院 1 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (124)
参考文献  (20)
节点文献
引证文献  (2)
同被引文献  (0)
二级引证文献  (0)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(4)
  • 参考文献(2)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(3)
  • 参考文献(3)
  • 二级参考文献(0)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
模糊聚类算法
权重向量
差异度
Davies-Bouldin指数
自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
吉林大学学报(理学版)
双月刊
1671-5489
22-1340/O
大16开
长春市南湖大路5372号
12-19
1955
chi
出版文献量(篇)
4812
总下载数(次)
6
总被引数(次)
24333
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导