以往的遥感影像多尺度分割方法对边界特征分析运用较少,为此提出了融入边界特征的多尺度加权聚合遥感影像分割方法(edge-incorporated multi-scale image segmentation by weighted aggregation,EIMSSWA).首先,检测影像梯度特征生成边界图;然后,在基元合并过程中计算相邻基元间公共边界的多种统计特征,并将其同基元的其他区域特征相结合,优化基元间的相似性度量,提高影像多尺度分割结果的精度;最后,通过eCognition软件的多尺度分割、基于加权聚合的影像分割(segmentation by weighted aggregation,SWA)和EIMSSWA等3组实验来验证方法的分割精度.结果表明,EIMSSWA方法能够取得更高精度、更合理的影像分割结果.