钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
一般工业技术期刊
\
中国图象图形学报期刊
\
结合全卷积网络与CycleGAN的图像实例风格迁移
结合全卷积网络与CycleGAN的图像实例风格迁移
作者:
刘哲良
朱玮
袁梓洋
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
深度学习
风格迁移
循环一致性对抗网络
语义分割
全卷积网络
摘要:
目的 传统的图像风格迁移主要在两个配对的图像间进行.循环一致性对抗网络(CycleGAN)首次将生成对抗网络应用于图像风格迁移,实现无配对图像之间的风格迁移,取得了一定的效果,但泛化能力较弱,当训练图像与测试图像之间差距较大时,迁移效果不佳.针对上述问题,本文提出了一种结合全卷积网络(FCN)与CycleGAN的图像风格迁移方法,使得图像能够实现特定目标之间的实例风格迁移.同时验证了训练数据集并非是造成CycleGAN风格迁移效果不佳的因素.方法 首先结合全卷积网络对图像进行语义分割,确定风格迁移的目标,然后将风格迁移后的图像与目标进行匹配,确定迁移对象实现局部风格迁移.为验证CycleGAN在训练图像和测试图像差距较大时风格转移效果不佳并非因缺少相应训练集,制作了训练数据集并带入原网络训练.结果 实验表明结合了全卷积网络与CycleGAN的图像风格迁移方法增加了识别能力,能够做到图像局部风格迁移而保持其余元素的完整性,相对于CycleGAN,该方法能够有效抑制目标之外区域的风格迁移,实验中所用4张图片平均只有4.03%的背景像素点发生了改变,实例迁移效果得到很好提升.而将自制训练集带入原网络训练后,依然不能准确地在目标对象之间进行风格迁移.结论 结合了全卷积网络与CycleGAN的方法能够实现图像的局部风格迁移而保持目标对象之外元素不发生改变,而改变训练数据集对CycleGAN进行实例风格迁移准确性的影响并不大.
暂无资源
收藏
引用
分享
推荐文章
CycleGAN-SN:结合谱归一化和CycleGAN的图像风格化算法
图像风格化
谱归一化
CycleGAN
基于改进CycleGAN的图像风格迁移
图像风格迁移
循环一致性对抗网络
密集连接卷积网络
深度残差网络
基于生成模型的图像风格迁移设计与实现
图像风格迁移
生成模型
生成网络
VGG网络
基于图像蒙板的无监督图像风格迁移
图像风格迁移
生成式对抗网络
无监督学习
图像蒙板
深度学习
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
结合全卷积网络与CycleGAN的图像实例风格迁移
来源期刊
中国图象图形学报
学科
数学
关键词
深度学习
风格迁移
循环一致性对抗网络
语义分割
全卷积网络
年,卷(期)
2019,(8)
所属期刊栏目
图像处理和编码
研究方向
页码范围
1283-1291
页数
9页
分类号
O29
字数
4272字
语种
中文
DOI
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
刘哲良
国防科技大学文理学院
1
2
1.0
1.0
2
朱玮
湘潭大学数学与计算科学学院智能计算与信息处理教育部重点实验室
1
2
1.0
1.0
3
袁梓洋
国防科技大学文理学院
1
2
1.0
1.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(0)
共引文献
(0)
参考文献
(0)
节点文献
引证文献
(2)
同被引文献
(4)
二级引证文献
(0)
2019(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
2020(2)
引证文献(2)
二级引证文献(0)
研究主题发展历程
节点文献
深度学习
风格迁移
循环一致性对抗网络
语义分割
全卷积网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
主办单位:
中国科学院遥感与数字地球研究所
中国图象图形学学会
北京应用物理与计算数学研究所
出版周期:
月刊
ISSN:
1006-8961
CN:
11-3758/TB
开本:
大16开
出版地:
北京9718信箱
邮发代号:
82-831
创刊时间:
1996
语种:
chi
出版文献量(篇)
5906
总下载数(次)
17
期刊文献
相关文献
1.
CycleGAN-SN:结合谱归一化和CycleGAN的图像风格化算法
2.
基于改进CycleGAN的图像风格迁移
3.
基于生成模型的图像风格迁移设计与实现
4.
基于图像蒙板的无监督图像风格迁移
5.
基于图像风格迁移的人脸识别域适应方法
6.
结合迁移学习与深度卷积网络的心电分类研究
7.
基于深度学习的图像风格迁移研究综述
8.
深度卷积神经网络下的图像风格迁移算法
9.
结合卷积神经网络与哈希编码的图像检索方法
10.
基于卷积神经网络的图片风格转换系统
11.
高光谱图像与卷积神经网络相结合的油桃轻微损伤检测
12.
改进卷积神经网络在分类与推荐中的实例应用
13.
一种利用迁移学习训练卷积神经网络的声呐图像识别方法
14.
基于全卷积神经网络的遥感图像海面目标检测
15.
基于卷积神经网络的植物图像分类方法研究
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
中国图象图形学报2022
中国图象图形学报2021
中国图象图形学报2020
中国图象图形学报2019
中国图象图形学报2018
中国图象图形学报2017
中国图象图形学报2016
中国图象图形学报2015
中国图象图形学报2014
中国图象图形学报2013
中国图象图形学报2012
中国图象图形学报2011
中国图象图形学报2010
中国图象图形学报2009
中国图象图形学报2008
中国图象图形学报2007
中国图象图形学报2006
中国图象图形学报2005
中国图象图形学报2004
中国图象图形学报2003
中国图象图形学报2002
中国图象图形学报2001
中国图象图形学报2000
中国图象图形学报1999
中国图象图形学报1998
中国图象图形学报2019年第9期
中国图象图形学报2019年第8期
中国图象图形学报2019年第7期
中国图象图形学报2019年第6期
中国图象图形学报2019年第5期
中国图象图形学报2019年第4期
中国图象图形学报2019年第3期
中国图象图形学报2019年第2期
中国图象图形学报2019年第12期
中国图象图形学报2019年第11期
中国图象图形学报2019年第10期
中国图象图形学报2019年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号