基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的2D卷积神经网络在进行视频识别时容易丢失目标在时间维度上的相关特征信息,导致识别准确率降低.针对该问题,本文采用3D卷积网络作为基本的网络框架,使用3D卷积核进行卷积操作提取视频中的时空特征,同时集成多个3D卷积神经网络模型对动态手势进行识别.为了提高模型的收敛速度和训练的稳定性,运用批量归一化(BN)技术优化网络,使优化后的网络训练时间缩短.实验结果表明,本文方法对于动态手势的识别具有较好的识别结果,在Sheffield Kinect Gesture(SKIG)数据集上识别准确率达到98.06%.与单独使用RGB信息、深度信息以及传统2D CNN相比,手势识别率均有所提高,验证了本文方法的可行性和有效性.
推荐文章
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于3D卷积神经网络的视频哈希算法
深度学习
哈希算法
视频检索
基于多尺度卷积神经网络模型的手势图像识别
卷积神经网络
卷积核
深度学习
特征提取
手势识别
二值化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于3D卷积神经网络的动态手势识别
来源期刊 计算机与现代化 学科 工学
关键词 3D卷积神经网络 光流 集成学习 深度学习 动态手势识别
年,卷(期) 2019,(11) 所属期刊栏目 人工智能
研究方向 页码范围 75-80
页数 6页 分类号 TP391.41
字数 5041字 语种 中文
DOI 10.3969/j.issn.1006-2475.2019.11.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 曾晓勤 河海大学计算机与信息学院 45 302 8.0 15.0
2 顾陈楠 河海大学计算机与信息学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (19)
共引文献  (20)
参考文献  (7)
节点文献
引证文献  (1)
同被引文献  (2)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(4)
  • 参考文献(2)
  • 二级参考文献(2)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
3D卷积神经网络
光流
集成学习
深度学习
动态手势识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导