基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对电力负荷非线性动态特性导致的负荷预测困难、预测精度低等问题,本文构建了深度递归神经网络短期负荷预测模型.在深度神经网络多隐层结构的基础上,深度递归神经网络增设了关联层,并以改进粒子群算法作为网络的优化学习算法,对模型权值空间进行深度优化.对某地区电网实际负荷进行预测仿真,结果表明与 BP 网络、深度神经网络相比,深度递归神经网络的平均绝对误差的周平均值分别降低 1.61%和0.56%,验证了深度递归神经网络能够融合前馈与反馈连接,提高网络泛化能力,有效提高负荷预测精度.
推荐文章
基于BP神经网络的电力系统短期负荷预测
负荷预测
神经网络
遗传算法
人工神经网络在电力系统短期负荷预测中的应用
多层神经网络
BP模型
负荷预测
电力系统短期负荷预测的多神经网络集成模型
自适应神经网络
短期负荷预测
Boosting算法
基于LSTM时间递归神经网络的短期电力负荷预测
短期电力负荷预测
LSTM
时间递归
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度递归神经网络的电力系统短期负荷预测模型
来源期刊 电力系统及其自动化学报 学科 工学
关键词 深度神经网络 深度递归神经网络 改进粒子群优化算法 短期负荷预测 电力系统
年,卷(期) 2019,(1) 所属期刊栏目 学术论文
研究方向 页码范围 112-116
页数 5页 分类号 TM715
字数 3512字 语种 中文
DOI 10.3969/j.issn.1003-8930.2019.01.021
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张智晟 青岛大学自动化与电气工程学院 67 384 11.0 16.0
2 于惠鸣 青岛大学自动化与电气工程学院 2 15 2.0 2.0
3 龚文杰 8 12 1.0 3.0
4 段晓燕 6 11 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (156)
参考文献  (14)
节点文献
引证文献  (11)
同被引文献  (50)
二级引证文献  (1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(9)
  • 参考文献(1)
  • 二级参考文献(8)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(7)
  • 参考文献(1)
  • 二级参考文献(6)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(12)
  • 参考文献(1)
  • 二级参考文献(11)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(10)
  • 参考文献(3)
  • 二级参考文献(7)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(4)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(4)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(8)
  • 引证文献(7)
  • 二级引证文献(1)
研究主题发展历程
节点文献
深度神经网络
深度递归神经网络
改进粒子群优化算法
短期负荷预测
电力系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电力系统及其自动化学报
月刊
1003-8930
12-1251/TM
大16开
天津市南开区天津大学电气与自动化工程学院
1989
chi
出版文献量(篇)
3958
总下载数(次)
6
总被引数(次)
53050
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导