基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于自适应相关向量机(Adaptive multiclass relevance vector machines,A-MRVM)的滚动轴承故障识别方法,该方法利用遗传算法对多分类相关向量机核函数参数进行优化,依据故障样本自身特性自适应地选取最优核参数,克服核参数人为选取的不确定性,从而构建基于自适应多分类相关向量机的故障识别模型.将该故障识别模型应用于滚动轴承故障识别中,分别提取滚动轴承振动信号小波包能量及EEMD(Ensemble empirical mode decomposition)能量作为故障特征进行故障识别,并与其它方法进行实验对比研究.实验结果表明,所提方法不仅能有效识别出故障类型,且具有较高的故障识别模型构建效率,验证了所提方法的可行性及优越性.同时,该方法也能对故障类型发生的可能性进行评估,为分析滚动轴承故障类型提供更多的参考信息.
推荐文章
蝙蝠算法优化极限学习机的滚动轴承故障分类
蝙蝠算法
极限学习机
无量纲指标
滚动轴承
故障诊断
自适应遗传算法在滚动轴承故障诊断中的应用
自适应遗传算法
高阶模糊BP神经网络
小波分析
基于自适应遗传随机共振的滚动轴承微弱故障诊断
微弱故障
滚动轴承
随机共振
遗传算法
SAE网络
实验验证
基于多尺度熵的滚动轴承故障诊断方法
样本熵
多尺度熵
滚动轴承
故障诊断
复杂性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 自适应多分类相关向量机的滚动轴承故障识别
来源期刊 机械科学与技术 学科 工学
关键词 故障识别 滚动轴承 多分类相关向量机 自适应 遗传算法
年,卷(期) 2019,(10) 所属期刊栏目 机械动力学
研究方向 页码范围 1535-1541
页数 7页 分类号 TH165.3
字数 5512字 语种 中文
DOI 10.13433/j.cnki.1003-8728.20190016
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王波 滁州学院机械与电气工程学院 37 68 4.0 7.0
2 王志乐 滁州学院机械与电气工程学院 10 1 1.0 1.0
3 张青 滁州学院机械与电气工程学院 16 39 4.0 5.0
4 张健康 滁州学院机械与电气工程学院 1 1 1.0 1.0
5 熊鑫州 滁州学院机械与电气工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (41)
共引文献  (27)
参考文献  (14)
节点文献
引证文献  (1)
同被引文献  (9)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(9)
  • 参考文献(3)
  • 二级参考文献(6)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障识别
滚动轴承
多分类相关向量机
自适应
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
机械科学与技术
月刊
1003-8728
61-1114/TH
大16开
西安友谊西路127号
52-193
1981
chi
出版文献量(篇)
8073
总下载数(次)
15
总被引数(次)
69926
论文1v1指导