基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现代战争中雷达信号日趋复杂,如何快速准确地从种类繁多、数据量庞大的雷达检测数据中,获取目标航迹的类别信息,为战场指挥提供准确有效的信息是当前急需解决的难题.传统基于人的经验认知的雷达目标航迹识别方法已经无法有效应对瞬息万变的战场和海量数据.根据实际雷达数据特点,提出了使用对数的雷达航迹预处理方法,并构建了基于卷积神经网络的深度学习模型,实现了对雷达对抗中的目标航迹的识别与检测.基于模拟生成的雷达目标航迹数据对提出的数据预处理方法和构建的模型进行测试;实验表明,所提出的方法能很好地实现对目标航迹的检测与识别.
推荐文章
基于卷积神经网络的高分辨率雷达目标识别
高分辨距离像
雷达目标识别
卷积神经网络
批归一化
支持向量机
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于BP神经网络的雷达目标识别算法研究
BP神经网络
雷达目标识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的雷达目标航迹识别研究
来源期刊 强激光与粒子束 学科 工学
关键词 雷达对抗 电子战 目标检测 对数预处理 卷积神经网络
年,卷(期) 2019,(9) 所属期刊栏目 复杂电磁环境
研究方向 页码范围 64-69
页数 6页 分类号 TN959
字数 5284字 语种 中文
DOI 10.11884/HPLPB201931.180388
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 樊玉琦 合肥工业大学计算机与信息学院 17 19 3.0 3.0
3 许雄 23 92 6.0 9.0
4 郭丹 合肥工业大学计算机与信息学院 20 113 6.0 10.0
5 刘瑜岚 合肥工业大学计算机与信息学院 2 1 1.0 1.0
6 温鹏飞 合肥工业大学计算机与信息学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (62)
共引文献  (6)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(9)
  • 参考文献(2)
  • 二级参考文献(7)
2016(8)
  • 参考文献(1)
  • 二级参考文献(7)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
雷达对抗
电子战
目标检测
对数预处理
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
强激光与粒子束
月刊
1001-4322
51-1311/O4
大16开
四川绵阳919-805信箱
62-76
1989
chi
出版文献量(篇)
9833
总下载数(次)
7
总被引数(次)
61664
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导