基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
二值化卷积神经网络作为一种量化模型,具有模型体积小、运算效率高等显著优点,是卷积神经网络模型在低功耗嵌入式端部署的理想形式.本文分析了二值化卷积神经网络的特点,提出了针对批归一化层及二值化层改进,设计出了无需乘法运算单元的二值化卷积神经网络硬件架构并在FPGA平台上实现.结果表明,在运算量相同情况下,该设计在工作频率150 MHz下相比i5-7500 CPU实现了约9.7倍的加速,相比1080 Ti GPU实现了1.7倍的加速,而功耗仅为CPU的21%、GPU的5.6%.
推荐文章
基于ARM+FPGA平台的二值神经网络加速方法研究
二值神经网络
现场可编程门阵列
异或运算
行处理算法
基于FPGA的卷积神经网络设计与实现
卷积神经网络
现场可编程门阵列
阵列处理器
并行性
基于FPGA的卷积神经网络硬件加速器设计空间探索研究
卷积神经网络硬件加速器
设计空间探索
细粒度流水线
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于FPGA的改进二值化卷积层设计
来源期刊 电气开关 学科 工学
关键词 二值化 卷积神经网络 FPGA 改进的批归一化
年,卷(期) 2019,(6) 所属期刊栏目 设计与研究
研究方向 页码范围 8-13
页数 6页 分类号 TP391
字数 4293字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴丽君 福州大学物理与信息工程学院 11 29 3.0 5.0
2 蒋佩卿 福州大学物理与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (8)
共引文献  (3)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
二值化
卷积神经网络
FPGA
改进的批归一化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电气开关
双月刊
1004-289X
21-1279/TM
大16开
沈阳市于洪区巢湖街10号
8-65
1963
chi
出版文献量(篇)
3086
总下载数(次)
9
总被引数(次)
8969
论文1v1指导