基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高电能质量稳态指标预测精度,以气象因素、有功负荷及历史电能质量数据作为输入变量,提出一种基于改进核主成分分析(KPCA)和遗传算法(GA)优化BP神经网络的电能质量稳态指标预测方法,首先将改进K-means聚类算法与KPCA相结合,通过改进K-means算法将输入变量划分为不同的子类,降低了核矩阵维数;再利用KPCA提取每类输入变量的非线性主成分,简化网络结构;然后分别将每一类中提取的特征作为BP神经网络模型新的输入变量,并结合GA算法优化BP神经网络参数,建立每一类数据的预测模型.算例应用结果表明,该方法的预测精度明显优于传统BP神经网络预测方法和KPCA+ BP神经网络预测方法.
推荐文章
基于GA-BP神经网络算法的马铃薯晚疫病预测模型
马铃薯晚疫病
遗传算法
BP神经网络
归一化处理
基于改进GA-BP神经网络的工厂污水监测系统研究
工厂污水
水质分类
改进GA
BP神经网络
污水监测
自适应算法
基于GA-BP神经网络的电力系统负荷预测研究
电力系统
负荷预测
BP神经网络
遗传算法
GA-BP
基于GA-BP神经网络的城市用水量预测
城市用水
用水量预测
BP神经网络
预测建模
网络训练
仿真分析
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进KPCA和GA-BP神经网络的电能质量稳态指标预测
来源期刊 水电能源科学 学科 工学
关键词 电能质量稳态指标 核主成分分析 K-means聚类 神经网络 遗传算法
年,卷(期) 2019,(5) 所属期刊栏目 电气工程
研究方向 页码范围 189-193
页数 5页 分类号 TM741
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (69)
共引文献  (91)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1950(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(6)
  • 参考文献(2)
  • 二级参考文献(4)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电能质量稳态指标
核主成分分析
K-means聚类
神经网络
遗传算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
总被引数(次)
55104
论文1v1指导