基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
人机对话系统能够让机器通过人类语言与人进行交互,是人工智能领域的一项重要工作.因其在虚拟助手和社交聊天机器人等领域的商业价值而广受工业界和学术界的关注.近年来,互联网社交数据快速增长促进了数据驱动的开放领域对话系统的研究,尤其是将深度学习技术应用到其中取得了突破性进展.基于深度学习的开放领域对话系统使用海量社交对话数据,通过检索或者生成的方法建立对话模型学习对话模式.将深度学习融入检索式系统中研究提高对话匹配模型的效果,将深度学习融人生成式系统中构建更高质量的生成模型,成为了基于深度学习的开放领域对话系统的主要任务.本文对近几年基于深度学习的开放领域对话系统研究进展进行综述,梳理、比较和分析主要方法,整理其中的关键问题和已有解决方案,总结评测指标,展望未来研究趋势.
推荐文章
基于知识库的开放领域问答系统
问答系统
开放领域
实体识别
实体链接
知识库
深度学习相关研究综述
深度学习
神经网络
算法模型
软件工具
硬件加速
基于深度学习的图像风格迁移研究综述
图像风格迁移
深度学习
迁移学习
纹理合成
基于深度学习的行人重识别研究综述
行人重识别
监督学习
半监督学习
弱监督学习
无监督学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的开放领域对话系统研究综述
来源期刊 计算机学报 学科 工学
关键词 对话系统 聊天机器人 深度学习 序列到序列模型 匹配模型 对话系统评测
年,卷(期) 2019,(7) 所属期刊栏目
研究方向 页码范围 1439-1466
页数 28页 分类号 TP18
字数 25364字 语种 中文
DOI 10.11897/SP.J.1016.2019.01439
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈晨 北京大学软件与微电子学院 27 98 6.0 9.0
5 朱晴晴 北京大学软件与微电子学院 1 6 1.0 1.0
6 严睿 北京大学网络安全和信息化委员会办公室 5 6 1.0 2.0
7 柳军飞 北京大学计算机科学技术研究所 3 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (10)
节点文献
引证文献  (6)
同被引文献  (3)
二级引证文献  (2)
1950(1)
  • 参考文献(1)
  • 二级参考文献(0)
1966(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(5)
  • 引证文献(3)
  • 二级引证文献(2)
研究主题发展历程
节点文献
对话系统
聊天机器人
深度学习
序列到序列模型
匹配模型
对话系统评测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机学报
月刊
0254-4164
11-1826/TP
大16开
中国科学院计算技术研究所(北京2704信箱)
2-833
1978
chi
出版文献量(篇)
5154
总下载数(次)
49
总被引数(次)
187004
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导