基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了更加有效地检索到符合用户复杂语义需求的图像,提出一种基于文本描述与语义相关性分析的图像检索算法.该方法将图像检索分为两步:基于文本语义相关性分析的图像检索和基于SIFT特征的相似图像扩展检索.根据自然语言处理技术分析得到用户文本需求中的关键词及其语义关联,在选定图像库中通过语义相关性分析得到"种子"图像;接下来在图像扩展检索中,采用基于SIFT特征的相似图像检索,利用之前得到的"种子"图像作为查询条件,在网络图像库中进行扩展检索,并在结果集上根据两次检索的图像相似度进行排序输出,最终得到更加丰富有效的图像检索结果.为了证明算法的有效性,在标准数据集Corel5K和网络数据集Deriantart8K上完成了多组实验,实验结果证明该方法能够得到较为精确地符合用户语义要求的图像检索结果,并且通过扩展算法可以得到更加丰富的检索结果.
推荐文章
基于深度学习的服装图像语义分析与检索推荐
深度卷积神经网络
多尺度特征融合
服装语义分割
服装多尺度特征提取
服装检索
服装推荐
基于概念格的图像语义检索研究
概念格
基于内容的图像检索
语言变量
语义检索
基于图像外形的多尺度相关性检索算法
检索算法
相关性
多尺度
基于词汇树层次语义模型的图像检索算法
词汇树
语义主题信息
层次语义模型
语义映射
图像检索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于文本与语义相关性分析的图像检索
来源期刊 计算机工程与应用 学科 工学
关键词 图像检索 基于文本语义相关性的图像检索 语义相关度 SIFT低层视觉特征 图像扩展检索
年,卷(期) 2019,(1) 所属期刊栏目 图形图像处理
研究方向 页码范围 196-202
页数 7页 分类号 TP391.42
字数 6326字 语种 中文
DOI 10.3778/j.issn.1002-8331.1709-0209
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张静 华东理工大学信息科学与工程学院 20 91 5.0 9.0
2 穆亚昆 华东理工大学信息科学与工程学院 1 4 1.0 1.0
3 冯圣威 华东理工大学信息科学与工程学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (49)
共引文献  (66)
参考文献  (9)
节点文献
引证文献  (4)
同被引文献  (21)
二级引证文献  (0)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(3)
  • 参考文献(2)
  • 二级参考文献(1)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像检索
基于文本语义相关性的图像检索
语义相关度
SIFT低层视觉特征
图像扩展检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导