基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
行人再识别问题中,由于视角、光照和行人姿态等因素的变化,导致难以提取有效的行人特征,降低识别精度.而深度神经网络在训练样本较少的情况下较难训练,易出现过拟合现象.针对上述问题,本文提出一种多信息流动卷积神经网络(Multi-information Flow Convolutional Neural Network,MiF-CNN)模型,模型中包含一个特殊的卷积结构,该结构中每层卷积层提取到的特征与后续所有卷积层的输入相连接,增强了网络的特征信息流动性和梯度的反向传播效率,使得模型提取到的行人特征更具判别力.采用多损失函数组合方式训练网络模型,更好的区分行人类别.最后利用欧氏距离对行人特征相似性进行排序.在标准行人再识别数据集VIPeR和CUHK01上的实验表明,本文方法进一步提高了行人再识别精度,并有效改善了深度神经网络的过拟合现象.
推荐文章
基于多标签神经网络的行人属性识别
多标签分类
神经网络
行人属性
深度学习
嵌套池化三元组卷积神经网络的行人再识别
行人再识别
嵌套池化
三元组损失函数
局部特征
间接度量
基于卷积神经网络的行人目标检测系统设计
卷积神经网络
行人目标
检测系统
CNN框架
目标传感器
训练文件
访问接口
复用加速结构
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多信息流动卷积神经网络的行人再识别
来源期刊 电子学报 学科 工学
关键词 行人再识别 多信息流动 特征提取 卷积神经网络
年,卷(期) 2019,(2) 所属期刊栏目 学术论文
研究方向 页码范围 351-357
页数 7页 分类号 TP391
字数 4892字 语种 中文
DOI 10.3969/j.issn.0372-2112.2019.02.014
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 何大阔 东北大学信息科学与工程学院 61 1000 19.0 29.0
2 桑海峰 沈阳工业大学信息科学与工程学院 29 216 9.0 14.0
3 吕应宇 沈阳工业大学信息科学与工程学院 2 1 1.0 1.0
4 王传正 沈阳工业大学信息科学与工程学院 1 1 1.0 1.0
5 刘晴 东北大学信息科学与工程学院 1 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (5)
节点文献
引证文献  (1)
同被引文献  (6)
二级引证文献  (0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
行人再识别
多信息流动
特征提取
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导