基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于卷积神经网络的图像超分辨率重建(SRCNN)方法存在的重建网络浅、特征利用率低以及重建图像模糊等问题,提出基于多尺度特征映射网络的图像超分辨率重建方法. 多尺度特征映射网络通过学习低分辨率(LR)特征与高分辨率(HR)特征之间的映射关系,将多个尺度的LR特征映射到HR特征空间,通过特征融合来提高重建过程中对特征的利用率;该方法定义了结合逐像素损失、感知损失和对抗损失的联合损失函数,从低频内容、图像边缘和局部纹理等方面均衡提升重建图像质量. 对数据集Set5、Set14和BSD100的图片4倍下采样后进行测试,与当前主流方法进行比较和分析. 实验证明,基于生成对抗的多尺度特征映射网络在提高图像感知质量方面表现优秀,重建的图像具有更加清晰的边缘和纹理,在客观评价上具有较好的评分.
推荐文章
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于ResNeXt和WGAN网络的单图像超分辨率重建
单图像超分辨率重建
ResNeXt
WGAN
深度学习
基于MAP算法的图像超分辨率重建
超分辨率
图像重建
最大后验概率
基于图像自相似性的多尺度稀疏表示肺4D-CT图像超分辨率重建
四维计算机断层摄影
超分辨率重建
图像自相似性
多尺度分析
稀疏表示
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多尺度特征映射网络的图像超分辨率重建
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 卷积神经网络 超分辨率重建 生成对抗网络 深度学习 感知损失
年,卷(期) 2019,(7) 所属期刊栏目 自动化技术、计算机技术
研究方向 页码范围 1331-1339
页数 9页 分类号 TP 391
字数 5527字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵丽娟 华北电力大学控制与计算机工程学院 44 314 9.0 16.0
2 段然 华北电力大学控制与计算机工程学院 2 4 1.0 2.0
3 周登文 华北电力大学控制与计算机工程学院 14 49 3.0 6.0
4 柴晓亮 华北电力大学控制与计算机工程学院 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (94)
共引文献  (34)
参考文献  (10)
节点文献
引证文献  (1)
同被引文献  (5)
二级引证文献  (0)
1964(3)
  • 参考文献(0)
  • 二级参考文献(3)
1978(2)
  • 参考文献(0)
  • 二级参考文献(2)
1981(2)
  • 参考文献(0)
  • 二级参考文献(2)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(12)
  • 参考文献(2)
  • 二级参考文献(10)
2017(6)
  • 参考文献(2)
  • 二级参考文献(4)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
超分辨率重建
生成对抗网络
深度学习
感知损失
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导