基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于工业互联网和多传感器数据的电机故障诊断方法.通过各类传感器在线实时得到电机的电压、电流、振动、温度等信号的瞬时值,并转化为表征电机状态的各个特征参数.根据各个特征参数在各个故障模式下的变动情况,得到各个故障模式下故障特征及其隶属度.把故障特征与故障模式之间的关系分为充分条件和必要条件关系.按照充分条件和必要条件分类后,对每个故障模式对应的2类条件下的故障特征的隶属度进行融合,最后得出每个故障模式的隶属度,为远程运维系统决策服务.该方法既可以部署在电机远程运维工业互联网的边缘设备中,也可以部署在云平台服务程序中,实现快速而可靠的电机故障诊断.
推荐文章
基于多传感器数据融合的电机故障诊断
电机
故障诊断
数据融合
证据理论
基于深度卷积网络的多传感器信号故障诊断方法研究
深度学习
基于深度卷积网络
故障诊断
多传感器信息融合的智能故障诊断
故障诊断
信息融合
D-S 证据理论
主元分析
基于多传感器数据融合技术的电子设备故障诊断
故障诊断
数据融合
发射机
神经网络
D-S证据理论
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于工业互联网和多传感器数据的电机故障诊断方法
来源期刊 电机与控制应用 学科 工学
关键词 电机 故障诊断 多传感器 工业互联网
年,卷(期) 2019,(12) 所属期刊栏目 故障诊断与保护
研究方向 页码范围 92-98
页数 7页 分类号 TM307
字数 4589字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 韦福东 4 1 1.0 1.0
2 刘朋鹏 3 1 1.0 1.0
3 王建辉 3 1 1.0 1.0
4 王辉 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (22)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(1)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(4)
  • 参考文献(1)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电机
故障诊断
多传感器
工业互联网
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电机与控制应用
月刊
1673-6540
31-1959/TM
大16开
上海市武宁路505号
4-199
1959
chi
出版文献量(篇)
4216
总下载数(次)
2
总被引数(次)
22702
论文1v1指导