基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
研究运用复旦中文文本及搜狗中文文档作为研究对象,提高了中文文本分类精确度及召回率,分析得出特征词的最佳贡献值.应用朴素贝叶斯分类方法和改进的TFIDF关键字提取及权重计算,提出TNBIF模型分类方法,在Spark平台上并行分类实现.实验结果表明:应用TNBIF模型实行中文文本分类,精确度高达95.49%,比传统文本分类方法精确度提高5.41%,召回率提高了6.64%.本研究得出最佳贡献值为0.95.
推荐文章
Spark框架下利用分布式NBC的大数据文本分类方法
文本分类
MapReduce
Spark框架
分布式
朴素贝叶斯分类器
机器学习
中文文本分类研究
文本分类
k 近邻
支持向量机
最大熵
基于类别特征向量表示的中文文本分类算法
中文文本分类
向量空间模型
评价函数
特征提取
基于神经网络的中文文本分类中的特征选择技术
文本分类
神经网络
主成分分析
特征选择
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于分布式框架下的中文文本特征分类
来源期刊 电脑与电信 学科 工学
关键词 TNBIF 模型 海量数据集 Spark 特征分类 并行分类
年,卷(期) 2019,(5) 所属期刊栏目 基金项目
研究方向 页码范围 1-7
页数 7页 分类号 TP391.1
字数 5023字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张晓琳 内蒙古科技大学信息工程学院 118 423 10.0 15.0
2 宗彩乐 2 1 1.0 1.0
3 张慧芳 内蒙古科技大学信息工程学院 3 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TNBIF
模型
海量数据集
Spark
特征分类
并行分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑与电信
月刊
1008-6609
44-1606/TN
大16开
广州市连新路171号国际科技中心B108室
1995
chi
出版文献量(篇)
8962
总下载数(次)
13
总被引数(次)
9565
论文1v1指导