作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
旅客退票后释放的空闲席位被有效再利用是铁路部门研究的重点课题之一,对退票情况进行预测,是实现对此部分席位提前规划和合理管理的前提,可以满足更多旅客的出行需求.研究铁路旅客退票率预测,首先,分析了退票率数据的特点,设计了EW-DBSCAN算法对旅客退票率进行离散化处理;然后,基于梯度算法在目标离散化区间计算出满足误差范围的最优预测退票率;最后,利用基于贝叶斯参数最优化的XGBoost算法对旅客退票率进行分类,并预测各区段的退票率.最后对该分类方法进行验证,并与其他方法进行对比,结果表明本文的分类算法精确度较高.
推荐文章
基于优化XGBoost算法的电信用户流失预测
XGBoost算法
用户流失
数据挖掘
贝叶斯优化
基于XGBoost分类算法的热舒适预测模型
热舒适
XGBoost分类算法
公共建筑
SHAP值
基于XGBoost的航空器动态滑行时间预测方法研究
航空运输
动态滑行时间
机器学习
XGBoost
样本量
基于Prophet的民航商务旅客出行量预测研究
商务旅客
出行量预测
时间序列模型
Prophet模型
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于XGBoost算法的铁路旅客退票率预测研究
来源期刊 铁道学报 学科 交通运输
关键词 铁路客票 退票率 离散化 梯度算法 XGBoost算法 贝叶斯算法
年,卷(期) 2019,(12) 所属期刊栏目 铁道运输、工程管理
研究方向 页码范围 19-25
页数 7页 分类号 U293.1
字数 6001字 语种 中文
DOI 10.3969/j.issn.1001-8360.2019.12.003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王红爱 5 14 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (130)
共引文献  (87)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1977(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(3)
  • 参考文献(0)
  • 二级参考文献(3)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(7)
  • 参考文献(1)
  • 二级参考文献(6)
2005(9)
  • 参考文献(1)
  • 二级参考文献(8)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(11)
  • 参考文献(0)
  • 二级参考文献(11)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(11)
  • 参考文献(1)
  • 二级参考文献(10)
2012(11)
  • 参考文献(2)
  • 二级参考文献(9)
2013(11)
  • 参考文献(1)
  • 二级参考文献(10)
2014(8)
  • 参考文献(1)
  • 二级参考文献(7)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(8)
  • 参考文献(2)
  • 二级参考文献(6)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(7)
  • 参考文献(5)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
铁路客票
退票率
离散化
梯度算法
XGBoost算法
贝叶斯算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
铁道学报
月刊
1001-8360
11-2104/U
大16开
北京复兴路10号
2-308
1979
chi
出版文献量(篇)
4684
总下载数(次)
8
总被引数(次)
85544
论文1v1指导