作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多分类器集成是机器学习领域的一个研究热点,基因微阵列技术是多领域综合交叉技术,在医学与生物学上有广泛的应用.但是,基因微阵列数据维度高且样本少等问题使得传统的分类器不能总是取得理想的分类效果.现提出一种基于多目标遗传算法的集成特征选择方法.首先,确定使用基于进化计算的集成特征选择方法进行微阵列数据分析;其次,实现最大化最小边缘的目标设计并不断完善适应值函数;最后,引导算法生成高差异度与精确度的基分类器.在前列腺癌数据集和乳腺癌数据集上与已有方法进行对比,实验表明,提出的方法在对基因微阵列数据进行分类判别方面性能表现良好.
推荐文章
一种基于微阵列数据的集成分类方法
微阵列数据
主成分分析
特征选择
支持向量机
集成分类
基于FCBF特征选择和集成优化学习的基因表达数据分类算法
特征选择
集成学习
微阵列基因表达数据
乌鸦搜索算法
核极限学习机
基于遗传算法的基因微阵列数据聚类
微阵列数据
聚类
遗传算法
一种有效的DNA微阵列数据特征基因提取方法
DNA微阵列
支持向量机
特征基因
特征选取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 集成特征选择的基因微阵列数据分类算法
来源期刊 信息记录材料 学科 工学
关键词 机器学习 分类器 基因微阵列 集成特征选择 数据判别
年,卷(期) 2019,(10) 所属期刊栏目 记录:云端与存储
研究方向 页码范围 163-166
页数 4页 分类号 TP24
字数 4369字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨爱华 12 22 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (4)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1996(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(2)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机器学习
分类器
基因微阵列
集成特征选择
数据判别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息记录材料
月刊
1009-5624
13-1295/TQ
大16开
河北省保定市乐凯南大街6号
18-185
1978
chi
出版文献量(篇)
9919
总下载数(次)
46
总被引数(次)
13955
论文1v1指导