基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了对矿井提升机的轴承故障进行精确诊断,提出一种基于深度神经网络的双层次故障诊断系统,精准识别提升机轴承的故障类型及故障程度.该系统首先利用滑动窗口重叠采样技术进行数据增强,随后结合自编码器减少噪声影响,通过反向传播算法训练深度神经网络双层分类器识别出故障模式及故障程度,最后用集成学习投票法进一步提高识别准确率.实验结果表明,该系统诊断准确率高于SVM与BPNN算法,可以完成提升机轴承的故障诊断任务.
推荐文章
基于改进深度卷积神经网络的轴承故障诊断
风电机组
轴承
故障诊断
深度卷积神经网络
基于特征选择与概率神经网络的轴承故障诊断研究
航空发动机
轴承
故障诊断
特征提取
概率神经网络
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于神经网络的车辆轴承故障诊断技术
铁道车辆
轴承
故障诊断
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度神经网络的提升机轴承故障诊断研究
来源期刊 计算机工程与应用 学科 工学
关键词 提升机轴承 神经网络 故障诊断 自编码 分类
年,卷(期) 2019,(16) 所属期刊栏目 模式识别与人工智能
研究方向 页码范围 123-129,184
页数 8页 分类号 TP391
字数 6363字 语种 中文
DOI 10.3778/j.issn.1002-8331.1903-0010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 牛强 中国矿业大学计算机科学与技术学院 57 459 11.0 19.0
2 夏士雄 中国矿业大学计算机科学与技术学院 118 1158 18.0 28.0
3 马辉 中国矿业大学计算机科学与技术学院 4 35 3.0 4.0
4 车迪 中国矿业大学计算机科学与技术学院 2 5 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (90)
共引文献  (47)
参考文献  (21)
节点文献
引证文献  (3)
同被引文献  (21)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(11)
  • 参考文献(0)
  • 二级参考文献(11)
2013(12)
  • 参考文献(2)
  • 二级参考文献(10)
2014(13)
  • 参考文献(3)
  • 二级参考文献(10)
2015(10)
  • 参考文献(4)
  • 二级参考文献(6)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(11)
  • 参考文献(9)
  • 二级参考文献(2)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
提升机轴承
神经网络
故障诊断
自编码
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导