作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着时代与科技的进步,人们对图像分辨率的要求越来越高。提高图像分辨率成为必须要解决的问题。目前利用深度学习进行超分辨率图像重建成为提高图像质量的一种趋势。深度学习对图像进行重建可以有效地提高图像质量。现有的基于卷积神经网络的超分辨率图像重建算法有着自身的优势同时也存在着缺陷。针对算法的缺陷,本文提出一种改进的图像重建算法。系统地分析了卷积神经网络在图像重建时的缺陷,针对重建时的训练时间长,存在网络退化现象等缺点。本文利用残差网络对传统的SRCNN进行改进。改进后的算法与传统的SRCNN算法相比,可以减少训练时间,同时可以防止网络退化现象的发生。
推荐文章
基于改进卷积神经网络的图像超分辨率算法研究
低分辨率
超分辨率
卷积神经网络
图像处理
复原
基于卷积神经网络的视频图像超分辨率重建方法
视频
超分辨率重建
卷积神经网络
深度学习
基于神经网络学习的锥形束CT图像超分辨率重建算法
锥形束CT
卷积神经网络
降噪
超分辨率重建
基于金字塔式双通道卷积神经网络的深度图像超分辨率重建
深度图像
超分辨率重建
双通道卷积神经网络
金字塔式网络结构
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络超分辨率图像重建算法的改进
来源期刊 电脑知识与技术:学术版 学科 工学
关键词 图像重建 卷积神经网络 残差网络 网络退化
年,卷(期) 2019,(2) 所属期刊栏目
研究方向 页码范围 163-165
页数 3页 分类号 TP311
字数 语种
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李超 安徽理工大学计算机技术系 19 20 3.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (1)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像重建
卷积神经网络
残差网络
网络退化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑知识与技术:学术版
旬刊
1009-3044
34-1205/TP
安徽合肥市濉溪路333号
26-188
出版文献量(篇)
41621
总下载数(次)
23
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
电脑知识与技术:学术版2019年第9Z期 电脑知识与技术:学术版2019年第9X期 电脑知识与技术:学术版2019年第9期 电脑知识与技术:学术版2019年第8Z期 电脑知识与技术:学术版2019年第8X期 电脑知识与技术:学术版2019年第8期 电脑知识与技术:学术版2019年第7Z期 电脑知识与技术:学术版2019年第7X期 电脑知识与技术:学术版2019年第7期 电脑知识与技术:学术版2019年第6Z期 电脑知识与技术:学术版2019年第6X期 电脑知识与技术:学术版2019年第6期 电脑知识与技术:学术版2019年第5Z期 电脑知识与技术:学术版2019年第5X期 电脑知识与技术:学术版2019年第5期 电脑知识与技术:学术版2019年第4Z期 电脑知识与技术:学术版2019年第4X期 电脑知识与技术:学术版2019年第4期 电脑知识与技术:学术版2019年第3Z期 电脑知识与技术:学术版2019年第3X期 电脑知识与技术:学术版2019年第3期 电脑知识与技术:学术版2019年第2Z期 电脑知识与技术:学术版2019年第2X期 电脑知识与技术:学术版2019年第2期 电脑知识与技术:学术版2019年第1Z期 电脑知识与技术:学术版2019年第1X期 电脑知识与技术:学术版2019年第12Z期 电脑知识与技术:学术版2019年第12X期 电脑知识与技术:学术版2019年第12期 电脑知识与技术:学术版2019年第11Z期 电脑知识与技术:学术版2019年第11X期 电脑知识与技术:学术版2019年第11期 电脑知识与技术:学术版2019年第10Z期 电脑知识与技术:学术版2019年第10X期 电脑知识与技术:学术版2019年第10期 电脑知识与技术:学术版2019年第1期
论文1v1指导