基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
股价波动是一个高度复杂的非线性系统,其股票的调整不是按照均匀的时间过程推进,具有自身的推进过程.结合LSTM(Long Short-Term Memory)递归神经网络的特性和股票市场的特点,对数据进行插值、小波降噪、归一化等预处理操作后,推送到搭建的不同LSTM层数与相同层数下不同隐藏神经元个数的LSTM网络模型中进行训练与测试.对比评价指标与预测效果找到适宜的LSTM层数与隐藏神经元个数,提高了预测准确率约30%.测试结果表明,该模型计算复杂度小,预测准确率有所提高,不仅能在股票投资前对预测股票走势提供有益的参考,还能帮助投资者在对实际股价有了进一步的认知后构建合适的股票投资策略.
推荐文章
数据多维处理LSTM股票价格预测模型
长短期记忆网络
股价预测
组合模型
萤火虫算法
最小二乘支持向量机
基于DMD-LSTM模型的股票价格时间序列预测研究
动态模态分解
长短期记忆神经网络
模态特征
板块联动效应
市场背景
基于情感分析和GAN的股票价格预测方法
股票价格预测
情感分析
卷积神经网络
生成对抗网络
基于分型布朗运动的股票价格趋势预测
布朗运动
分型布朗运动
蒙特卡洛模拟
正态性检验
股票价格
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于LSTM的股票价格预测建模与分析
来源期刊 计算机工程与应用 学科 工学
关键词 小波降噪 长短期记忆网络(LSTM)层数 隐藏神经元 股价预测
年,卷(期) 2019,(11) 所属期刊栏目 工程与应用
研究方向 页码范围 209-212
页数 4页 分类号 TP29
字数 3052字 语种 中文
DOI 10.3778/j.issn.1002-8331.1811-0239
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘宇红 贵州大学大数据与信息工程学院 77 340 10.0 15.0
2 张荣芬 贵州大学大数据与信息工程学院 43 148 7.0 11.0
3 彭燕 贵州大学大数据与信息工程学院 5 14 1.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (66)
共引文献  (36)
参考文献  (11)
节点文献
引证文献  (14)
同被引文献  (36)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(10)
  • 参考文献(1)
  • 二级参考文献(9)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(9)
  • 参考文献(1)
  • 二级参考文献(8)
2018(7)
  • 参考文献(7)
  • 二级参考文献(0)
2019(6)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(6)
  • 二级引证文献(0)
2019(6)
  • 引证文献(6)
  • 二级引证文献(0)
2020(8)
  • 引证文献(8)
  • 二级引证文献(0)
研究主题发展历程
节点文献
小波降噪
长短期记忆网络(LSTM)层数
隐藏神经元
股价预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导