基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
在当今信息科技发展的背景下,大数据的数量和种类越来越多,为了更好的利用不同类别的大数据,本文提出了一种基于改进BP神经网络和ELM的大数据分类方法.首先,利用改进的BP神经网络对原始大数据做预处理,剔除不良数据,为后续的大数据分类提供准确有效的数据.然后,利用量子粒子群算法(QPOS)对ELM算法进行优化,加速其训练过程.最后,将预处理的数据输入到训练好的极限学习内,实现大数据的优化分类.仿真结果表明,采用该算法进行大数据分类,准确性较高,误分类的概率较低,为人类提高了大数据的利用价值.
推荐文章
基于改进的BP神经网络方法的数据挖掘
数据挖掘
神经网络
BP算法
分类
预测
基于改进BP神经网络的指纹自动分类器
BP网络
指纹分类
poincare索引值
特征提取
误差扩大
基于GA改进BP神经网络网络异常检测方法
网络异常检测
BP神经网络
遗传算法
异常流量
基于TMR检测的遗传BP神经网络车辆分类算法
隧道磁电阻
遗传算法
车辆分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进BP神经网络和ELM的大数据分类方法
来源期刊 信息记录材料 学科 工学
关键词 大数据 BP神经网络 ELM 量子粒子群算法 优化分类
年,卷(期) 2019,(6) 所属期刊栏目 记录:云端与存储
研究方向 页码范围 174-176
页数 3页 分类号 TP39
字数 3045字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄博南 9 81 3.0 9.0
2 曲延涛 7 8 1.0 2.0
3 韩勇超 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (214)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(5)
  • 参考文献(0)
  • 二级参考文献(5)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(5)
  • 参考文献(1)
  • 二级参考文献(4)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(3)
  • 参考文献(2)
  • 二级参考文献(1)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
大数据
BP神经网络
ELM
量子粒子群算法
优化分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息记录材料
月刊
1009-5624
13-1295/TQ
大16开
河北省保定市乐凯南大街6号
18-185
1978
chi
出版文献量(篇)
9919
总下载数(次)
46
论文1v1指导