基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了实现保险场景的精准营销,同时充分利用千万级客户和保单历史成交记录的数据特点,本文经热门算法研究和统计理论分析,提出一种基于XGBoost改造的Deep Forest级联算法.该算法采用XGBoost浅层机器学习算法作为Deep Forest级联构建块,同时用AUC-PR标准作为级联构建深度学习不平衡样本评价的自适应过程,并将此算法分别与原有XGBoost算法和原始Deep Forest算法进行性能比较.经实践,上述算法应用投产于保险购买预测场景中,分别比原有XGBoost算法和原Deep Forest算法提高5.5%和2.8%,效果显著;同时提出的浅层学习向基于Deep Forest深度优化操作流程,也为其他类似应用场景提供了实践参考方向.
推荐文章
一种新的重名消解算法在保险领域中的应用研究
重名消解
数据挖掘
保险领域
实体
一种改进的roberts算法在焊缝识别中的应用研究
焊接机器人
roberts算法
焊缝识别
一种改进的BP-AdaBoost算法及应用研究
神经网络
BP-AdaBoost算法
思维进化算法
多分类
上证指数预测
强预测器
一种改进了的AABB算法在3D场景少儿益智系统中的应用
算法
3D场景
少儿益智系统
碰撞检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种改进Deep Forest算法在保险购买预测场景中的应用研究
来源期刊 现代信息科技 学科 工学
关键词 Deep Forest XGBoost 深度学习 保险精准营销
年,卷(期) 2019,(22) 所属期刊栏目 信息化应用
研究方向 页码范围 116-122
页数 7页 分类号 TP301.6
字数 6396字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 唐辉 中国人寿保险股份有限公司研发中心 3 5 1.0 2.0
2 林鹏程 中国人寿保险股份有限公司研发中心 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (324)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(8)
  • 参考文献(1)
  • 二级参考文献(7)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Deep Forest
XGBoost
深度学习
保险精准营销
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代信息科技
半月刊
2096-4706
44-1736/TN
16开
广东省广州市白云区机场路1718号8A09
46-250
2017
chi
出版文献量(篇)
4784
总下载数(次)
45
总被引数(次)
3182
论文1v1指导