作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对入侵事件中的挖掘事件和人步行事件的识别,文章设计了一种Richer子波神经网络模型,用来识别由挖掘和人步行事件引起的震动信号的种类.实验中一共采用200个样本,其中120个作训练,80个作测试,通过分析网络训练输出数据的降维可视化散点分布,可以得到该模型训练输出的数据具有不同类间间隔大,同类间间隔小的特点,且该模型网络分类识别准确率最高可达96.25%,平均识别准确率约为95%.
推荐文章
基于卷积神经网络的交通声音事件识别方法
Gammatone滤波器
卷积神经网络
音频事件识别
公路交通环境
声音数字信号
子带滤波
基于神经网络数字识别方法的研究
数字识别
神经网络
粗糙集
特征提取
基于卷积神经网络的未知协议识别方法
深度学习
机器学习
卷积神经网络
未知协议识别
基于Hopfield神经网络的面目标特征识别方法研究
面目标
Hopfield神经网络
特征识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Richer子波神经网络的入侵事件识别方法
来源期刊 无线互联科技 学科
关键词 入侵事件识别 挖掘 人步行 神经网络 Richer子波
年,卷(期) 2019,(8) 所属期刊栏目 网络地带
研究方向 页码范围 26-27
页数 2页 分类号
字数 1369字 语种 中文
DOI 10.3969/j.issn.1672-6944.2019.08.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 程博 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (26)
共引文献  (3)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
入侵事件识别
挖掘
人步行
神经网络
Richer子波
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
无线互联科技
半月刊
1672-6944
32-1675/TN
16开
江苏省南京市
2004
chi
出版文献量(篇)
18145
总下载数(次)
78
总被引数(次)
27320
论文1v1指导