基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Gabor特征的人脸表情识别具有良好的识别性能,但同样存在特征维数大的缺点,该文提出用Gabor融合特征的方法来进行降维以解决维数大的缺点.深度自动编码器具有对人脸自学习的能力,能精确提取有用的信息,也有非线性降维的作用.考虑到Gabor融合特征降维幅度不大,便加入自动编码器进行二次降维,将经过二次降维的特征输入深度自动编码器进行笑脸识别.该文在实验过程中采用两个数据库(公开的GENKI数据库,实验采集的数据库)进行实验.实验结果表明经过Gabor融合特征的实部作为深度自动编码器的输入的识别率比传统方法和未经降维Gabor特征识别率高.
推荐文章
基于深度自动编码器的机场安检人脸识别系统设计
人脸识别
Gabor小波
识别率
深度自动编码器
基于循环自动编码器的间歇过程故障监测
算法
动态建模
神经网络
LSTM
过程监测
循环自动编码器
基于平滑l1范数的深度稀疏自动编码器社区识别算法
深度学习
社区识别
稀疏自编码器
平滑l1范数
基于降噪自动编码器及其改进模型的微博情感分析
降噪自动编码器
微博
情感分析
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Gabor融合特征与深度自动编码器的笑脸识别方法
来源期刊 信息记录材料 学科 工学
关键词 Gabor小波变换 Gabor融合特征 自动编码器 深度自动编码器 笑脸识别
年,卷(期) 2019,(1) 所属期刊栏目 信息·技术
研究方向 页码范围 83-84
页数 2页 分类号 TP212.6
字数 1218字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 梁淑芬 五邑大学智能制造学部 31 176 6.0 12.0
2 杨芳臣 五邑大学智能制造学部 4 0 0.0 0.0
3 付迎迎 五邑大学智能制造学部 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (35)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(6)
  • 参考文献(3)
  • 二级参考文献(3)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Gabor小波变换
Gabor融合特征
自动编码器
深度自动编码器
笑脸识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息记录材料
月刊
1009-5624
13-1295/TQ
大16开
河北省保定市乐凯南大街6号
18-185
1978
chi
出版文献量(篇)
9919
总下载数(次)
46
相关基金
广东省自然科学基金
英文译名:Guangdong Natural Science Foundation
官方网址:http://gdsf.gdstc.gov.cn/
项目类型:研究团队
学科类型:
论文1v1指导