基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 高光谱图像具有高维度的光谱结构,而且邻近波段之间往往存在大量冗余信息,导致在随机样本选择策略和图像分类过程中出现选择波段算法复杂度较高和不适合小样本的现象.针对该问题,在集成学习算法的基础上,考虑不同波段在高光谱图像分类过程中的作用不同,提出一种融合累积变异比和超限学习机的高光谱图像分类算法.方法 定义波段的累积变异比函数来确定各波段在分类算法的贡献程度.基于累积变异比函数剔除低效波段,并结合空谱特征进行平均分组加权随机选择策略进行数据降维.为了进一步提高算法的泛化能力,对降维后提取的空谱特征进行多次样本重采样,训练得到多个超限学习机弱分类器,再将多个弱分类器的结果通过投票表决法得到最后的分类结果.结果 实验使用Indian Pines、Pavia University scene和Salinas这3种典型的高光谱图像作为实验标准数据集,采用支持向量机(support vector machine,SVM),超限学习机(extreme learningmachine,ELM),基于二进制多层Gabor超限学习机(ELM with Gabor,GELM),核函数超限学习机(ELM with kernel,KELM),GELM-CK(GELM with composite kernel),KELM-CK(KELM with composite kernel)和SS-EELM(spatial-spec-tral and ensemble ELM)为标准检测算法验证本文算法的有效性,在样本比例较小的实验中,本文算法的总体分类精度在3种数据集中分别为98.0%、98.9%和97.9%,比其他算法平均分别高出9.6%和4.7%和4.1%.本文算法耗时在3种数据集中分别为15.2s、60.4s和169.4 s.在同类目标空谱特性差异较大的情况下,相比于分类精度较高的KELM-CK和SS-EELM算法减少了算法耗时,提高了总体分类精度;在同类目标空谱特性相近的情况下,相比于其他算法,样本数量的增加对本文算法的耗时影响较小.结论 本文算法通过波段的累积变异比函数优化了平均分组波段选择策略,针对各类地物目标分布较广泛并且同类目标空谱特性差异较大的高光谱数据集,能够有效提取特征光谱维度的差异性,确定参数较少,总体分类效果较好.
推荐文章
基于空谱特征的核极端学习机高光谱遥感图像分类算法
局部二值模式
空谱结合
核极限学习机
高光谱遥感图像
空谱超像素核极限学习机的高光谱分类算法
空间结构信息
超像素
同谱异类
极限学习机
基于超限学习机的腹部CT序列图像肝脏自动分割
腹部CT序列
肝脏分割
神经网络
超限学习机
基于DS聚类的高光谱图像集成分类算法
优势集
聚类
集成
支持向量机
高光谱图像分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合累积变异比和集成超限学习机的高光谱图像分类
来源期刊 中国图象图形学报 学科 工学
关键词 高光谱图像 超限学习机 累积变异比 投票表决 分类
年,卷(期) 2020,(5) 所属期刊栏目 遥感图像处理
研究方向 页码范围 1053-1068
页数 16页 分类号 TP391
字数 10800字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘万军 辽宁工程技术大学软件学院 181 1681 19.0 33.0
2 魏林 辽宁工程技术大学基础教学部 15 38 4.0 6.0
3 尹玉萍 辽宁工程技术大学电气与控制工程学院 16 51 5.0 7.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (279)
共引文献  (58)
参考文献  (24)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(8)
  • 参考文献(0)
  • 二级参考文献(8)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(12)
  • 参考文献(0)
  • 二级参考文献(12)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(12)
  • 参考文献(0)
  • 二级参考文献(12)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(21)
  • 参考文献(0)
  • 二级参考文献(21)
2012(23)
  • 参考文献(2)
  • 二级参考文献(21)
2013(27)
  • 参考文献(0)
  • 二级参考文献(27)
2014(37)
  • 参考文献(1)
  • 二级参考文献(36)
2015(41)
  • 参考文献(2)
  • 二级参考文献(39)
2016(33)
  • 参考文献(3)
  • 二级参考文献(30)
2017(19)
  • 参考文献(7)
  • 二级参考文献(12)
2018(9)
  • 参考文献(7)
  • 二级参考文献(2)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高光谱图像
超限学习机
累积变异比
投票表决
分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导