基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
场景文字识别的一个具有挑战性的方面是处理具有扭曲或不规则布局的文字.尤其是侧视文字和曲线文字在自然场景中较为常见,且难以识别.本文提出了一个带有灵活矫正功能的注意力增强网络,将其用于任意形状场景文字识别.此网络由基于卷积神经网络的文字矫正网络和基于注意力增强的识别网络两部分组成.矫正网络自适应地将输入图像中的文字进行矫正,降低识别难度,使基于注意力增强的序列识别网络直接根据矫正后的图像预测字符序列.整个模型可以进行端到端的训练,训练只需要图像和相应的文字真实标签.在各种公开数据集上进行了广泛的实验,包括SVT、ICDAR 2003和CUTE80等数据集,验证了此网络具有优异的性能.
推荐文章
图像场景识别中深度学习方法综述
场景识别
场景分类
深度学习
图像特征
计算机视觉
基于深度学习的场景文字检测综述
深度学习
场景文字
检测定位
基于深度学习的智能治超场景下货车车型识别
智能治超
深度学习
目标检测
车型识别
注意力机制
基于深度学习方法的复杂场景下车辆目标检测
深度学习
Faster R-CNN
ImageNet数据集
车辆目标检测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的任意形状场景文字识别
来源期刊 四川大学学报(自然科学版) 学科 工学
关键词 深度学习 场景文字识别 神经网络 注意力机制
年,卷(期) 2020,(2) 所属期刊栏目 计算机科学
研究方向 页码范围 255-263
页数 9页 分类号 TP391.1
字数 4967字 语种 中文
DOI 10.3969/j.issn.0490-6756.2020.02.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 余谅 四川大学计算机学院 24 81 5.0 7.0
2 徐富勇 四川大学计算机学院 2 0 0.0 0.0
3 盛钟松 四川大学计算机学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (97)
共引文献  (38)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(10)
  • 参考文献(0)
  • 二级参考文献(10)
2014(10)
  • 参考文献(1)
  • 二级参考文献(9)
2015(11)
  • 参考文献(0)
  • 二级参考文献(11)
2016(13)
  • 参考文献(2)
  • 二级参考文献(11)
2017(10)
  • 参考文献(3)
  • 二级参考文献(7)
2018(7)
  • 参考文献(1)
  • 二级参考文献(6)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
场景文字识别
神经网络
注意力机制
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
四川大学学报(自然科学版)
双月刊
0490-6756
51-1595/N
大16开
成都市九眼桥望江路29号
62-127
1955
chi
出版文献量(篇)
5772
总下载数(次)
10
总被引数(次)
25503
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导