钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
一般工业技术期刊
\
中国图象图形学报期刊
\
双核压缩激活神经网络艺术图像分类
双核压缩激活神经网络艺术图像分类
作者:
张华熊
杨秀芹
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
艺术图像分类
深度可分离卷积
卷积神经网络
整体特征
局部细节特征
摘要:
目的 为了充分提取版画、中国画、油画、水彩画和水粉画等艺术图像的整体风格和局部细节特征,实现计算机自动分类检索艺术图像的需求,提出通过双核压缩激活模块(double kernel squeeze-and-excitation,DKSE)和深度可分离卷积搭建卷积神经网络对艺术图像进行分类.方法 根据SKNet(selective kernel networks)自适应调节感受野提取图像整体与细节特征的结构特点和SENet(squeeze-and-excitation networks)增强通道特征的特点构建DKSE模块,利用DKSE模块分支上的卷积核提取输入图像的整体特征与局部细节特征;将分支上的特征图进行特征融合,并对融合后的特征图进行特征压缩和激活处理;将处理后的特征加权映射到不同分支的特征图上并进行特征融合;通过DKSE模块与深度可分离卷积搭建卷积神经网络对艺术图像进行分类.结果 使用本文网络模型对有无数据增强(5类艺术图像数据增强后共25 634幅)处理的数据分类,数据增强后的分类准确率比未增强处理的准确率高9.21%.将本文方法与其他网络模型和传统分类方法相比,本文方法的分类准确率达到86.55%,比传统分类方法高26.35%.当DKSE模块分支上的卷积核为1×1和5×5,且放在本文网络模型第3个深度可分离卷积后,分类准确率达到87.58%.结论 DKSE模块可以有效提高模型分类性能,充分提取艺术图像的整体与局部细节特征,比传统网络模型具有更好的分类准确率.
暂无资源
收藏
引用
分享
推荐文章
基于子块分类的BP神经网络图像压缩
神经网络
图像压缩
子块分类
视觉特征
基于神经网络的图像分类算法
分类算法
神经网络
图像处理
图像分类
基于概率神经网络的遥感图像分类MATLAB实现
Matlab
概率神经网络
分类
精度
Kappa系数
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
双核压缩激活神经网络艺术图像分类
来源期刊
中国图象图形学报
学科
工学
关键词
艺术图像分类
深度可分离卷积
卷积神经网络
整体特征
局部细节特征
年,卷(期)
2020,(5)
所属期刊栏目
图像分析和识别
研究方向
页码范围
967-976
页数
10页
分类号
TP391.4
字数
4935字
语种
中文
DOI
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
张华熊
浙江理工大学信息学院
53
215
8.0
12.0
2
杨秀芹
浙江理工大学信息学院
1
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(29)
共引文献
(8)
参考文献
(8)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1997(1)
参考文献(0)
二级参考文献(1)
1998(1)
参考文献(0)
二级参考文献(1)
1999(2)
参考文献(0)
二级参考文献(2)
2004(4)
参考文献(1)
二级参考文献(3)
2006(5)
参考文献(1)
二级参考文献(4)
2007(1)
参考文献(0)
二级参考文献(1)
2009(3)
参考文献(2)
二级参考文献(1)
2011(2)
参考文献(0)
二级参考文献(2)
2012(2)
参考文献(0)
二级参考文献(2)
2013(4)
参考文献(2)
二级参考文献(2)
2014(3)
参考文献(0)
二级参考文献(3)
2015(5)
参考文献(0)
二级参考文献(5)
2016(3)
参考文献(1)
二级参考文献(2)
2017(1)
参考文献(1)
二级参考文献(0)
2020(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
艺术图像分类
深度可分离卷积
卷积神经网络
整体特征
局部细节特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
主办单位:
中国科学院遥感与数字地球研究所
中国图象图形学学会
北京应用物理与计算数学研究所
出版周期:
月刊
ISSN:
1006-8961
CN:
11-3758/TB
开本:
大16开
出版地:
北京9718信箱
邮发代号:
82-831
创刊时间:
1996
语种:
chi
出版文献量(篇)
5906
总下载数(次)
17
期刊文献
相关文献
1.
基于子块分类的BP神经网络图像压缩
2.
基于神经网络的图像分类算法
3.
基于概率神经网络的遥感图像分类MATLAB实现
4.
基于卷积神经网络的植物图像分类方法研究
5.
基于卷积神经网络的军事图像分类
6.
基于卷积神经网络的人脸图像美感分类
7.
基于双概率神经网络的纹理图像识别
8.
基于BP人工神经网络的图像压缩技术过程及分析
9.
遗传算法优化确定BP神经网络的遥感图像分类
10.
基于多层卷积神经网络的SAR图像分类方法
11.
基于卷积神经网络的视频图像失真检测及分类
12.
SOM神经网络改进及在遥感图像分类中的应用
13.
Matlab自组织神经网络在遥感图像分类中的应用
14.
基于改进sigmoid激活函数的深度神经网络训练算法研究
15.
基于模糊神经网络预测器的贝尔模板图像压缩
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
任务中心
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
中国图象图形学报2022
中国图象图形学报2021
中国图象图形学报2020
中国图象图形学报2019
中国图象图形学报2018
中国图象图形学报2017
中国图象图形学报2016
中国图象图形学报2015
中国图象图形学报2014
中国图象图形学报2013
中国图象图形学报2012
中国图象图形学报2011
中国图象图形学报2010
中国图象图形学报2009
中国图象图形学报2008
中国图象图形学报2007
中国图象图形学报2006
中国图象图形学报2005
中国图象图形学报2004
中国图象图形学报2003
中国图象图形学报2002
中国图象图形学报2001
中国图象图形学报2000
中国图象图形学报1999
中国图象图形学报1998
中国图象图形学报2020年第9期
中国图象图形学报2020年第8期
中国图象图形学报2020年第7期
中国图象图形学报2020年第6期
中国图象图形学报2020年第5期
中国图象图形学报2020年第4期
中国图象图形学报2020年第3期
中国图象图形学报2020年第2期
中国图象图形学报2020年第12期
中国图象图形学报2020年第11期
中国图象图形学报2020年第10期
中国图象图形学报2020年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号