基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 现有大多数视觉问答模型均采用自上而下的视觉注意力机制,对图像内容无加权统一处理,无法更好地表征图像信息,且因为缺乏长期记忆模块,无法对信息进行长时间记忆存储,在推理答案过程中会造成有效信息丢失,从而预测出错误答案.为此,提出一种结合自底向上注意力机制和记忆网络的视觉问答模型,通过增强对图像内容的表示和记忆,提高视觉问答的准确率.方法 预训练一个目标检测模型提取图像中的目标和显著性区域作为图像特征,联合问题表示输入到记忆网络,记忆网络根据问题检索输入图像特征中的有用信息,并结合输入图像信息和问题表示进行多次迭代、更新,以生成最终的信息表示,最后融合记忆网络记忆的最终信息和问题表示,推测出正确答案.结果 在公开的大规模数据集VQA(visual question answering) v2.0上与现有主流算法进行比较实验和消融实验,结果表明,提出的模型在视觉问答任务中的准确率有显著提升,总体准确率为64.0%.与MCB(multimodal compact bilinear)算法相比,总体准确率提升了1.7%;与性能较好的VQA machine算法相比,总体准确率提升了1%,其中回答是/否、计数和其他类型问题的准确率分别提升了1.1%、3.4%和0.6%.整体性能优于其他对比算法,验证了提出算法的有效性.结论 本文提出的结合自底向上注意力机制和记忆网络的视觉问答模型,更符合人类的视觉注意力机制,并且在推理答案的过程中减少了信息丢失,有效提升了视觉问答的准确率.
推荐文章
结合引导解码和视觉注意力的图像语义描述模型
图像描述
多示例学习
引导解码
视觉注意力机制
基于自注意力机制的方面情感分类
方面词
情感分类
自注意力机制
语义编码
融入视觉常识和注意力的图像描述
图像描述
注意力机制
视觉常识
注意偏差
基于注意力机制的全景分割网络
全景分割
背景类实例重叠
三重态注意力机制
语义增强注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合自底向上注意力机制和记忆网络的视觉问答模型
来源期刊 中国图象图形学报 学科 工学
关键词 视觉问答 自底向上 注意力机制 记忆网络 多模态融合 多分类
年,卷(期) 2020,(5) 所属期刊栏目 图像理解和计算机视觉
研究方向 页码范围 993-1006
页数 14页 分类号 TP391
字数 9974字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 闫茹玉 合肥工业大学计算机与信息学院 1 0 0.0 0.0
2 刘学亮 合肥工业大学计算机与信息学院 10 9 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (1)
共引文献  (1)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
视觉问答
自底向上
注意力机制
记忆网络
多模态融合
多分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国图象图形学报
月刊
1006-8961
11-3758/TB
大16开
北京9718信箱
82-831
1996
chi
出版文献量(篇)
5906
总下载数(次)
17
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导