基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Speech recognition allows the machine to turn the speech signal into text through identification and understanding process. Extract the features, predict the maximum likelihood, and generate the models of the input speech signal are considered the most important steps to configure the Automatic Speech Recognition System (ASR). In this paper, an automatic Arabic speech recognition system was established using MATLAB and 24 Arabic words Consonant-Vowel Consonant-Vowel Consonant-Vowel (CVCVCV) was recorded from 19 Arabic native speakers, each speaker uttering the same word 3 times (total 1368 words). In order to test the system, 39-features were extracted by partitioning the speech signal into frames ~ 0.25 sec shifted by 0.10 sec. in back-end, the statistical models were generated by separated the features into number of states between 4 to 10, each state has 8-gaussian distributions. The data has 48 k sample rate and 32-bit depth and saved separately in a wave file format. The system was trained in phonetically rich and balanced Arabic speech words list (10 speakers * 3 times * 24 words, total 720 words) and tested using another word list (24 words * 9 speakers * 3 times *, total 648 words). Using different speakers similar words, the system obtained a very good word recognition accuracy results of 92.92% and a Word Error Rate (WER) of 7.08%.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Arabic Speech Recognition System Based on MFCC and HMMs
来源期刊 电脑和通信(英文) 学科 工学
关键词 Speech Recognition Feature Extraction Maximum LIKELIHOOD GAUSSIAN Distribution Consonant-Vowel
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 28-34
页数 7页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Speech
Recognition
Feature
Extraction
Maximum
LIKELIHOOD
GAUSSIAN
Distribution
Consonant-Vowel
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导