Speech recognition allows the machine to turn the speech signal into text through identification and understanding process. Extract the features, predict the maximum likelihood, and generate the models of the input speech signal are considered the most important steps to configure the Automatic Speech Recognition System (ASR). In this paper, an automatic Arabic speech recognition system was established using MATLAB and 24 Arabic words Consonant-Vowel Consonant-Vowel Consonant-Vowel (CVCVCV) was recorded from 19 Arabic native speakers, each speaker uttering the same word 3 times (total 1368 words). In order to test the system, 39-features were extracted by partitioning the speech signal into frames ~ 0.25 sec shifted by 0.10 sec. in back-end, the statistical models were generated by separated the features into number of states between 4 to 10, each state has 8-gaussian distributions. The data has 48 k sample rate and 32-bit depth and saved separately in a wave file format. The system was trained in phonetically rich and balanced Arabic speech words list (10 speakers * 3 times * 24 words, total 720 words) and tested using another word list (24 words * 9 speakers * 3 times *, total 648 words). Using different speakers similar words, the system obtained a very good word recognition accuracy results of 92.92% and a Word Error Rate (WER) of 7.08%.