基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
概念漂移会导致数据流分类模型的分类能力随时间发展而下降,这就要求分类模型有自适应的能力.现有的大多数自适应概念漂移的数据流分类模型往往假设数据输入分类模型得到预测标签之后就可以得到其真实标签,但这种假设在某些情况下是不合理的,因为数据标记往往成本高、耗时长.因此,针对数据流少量标签的问题,在考虑主动学习可能出现采样偏差的情况下,结合不确定性主动学习策略以及边界点和离群点检测方法(Boundary and Outlier Detection,BOD),提出一种新的主动学习方法ALBOD(Active Learning Based on Boundary and Outlier Detection).比较实验的结果表明,在概念漂移发生的情况下,与100%标记算法OzaBagAdwin(OBA)和HoeffdingAdaptiveTree(HAT)相比,ALBOD主动学习方法只需要平均20%左右的标签就可以使分类器保持同等分类精度,说明新方法ALBOD有良好的主动学习能力.
推荐文章
一种基于距离和采样机制的数据流分类方法
分类
集成学习
类分布不平衡
类标签缺失
基于集成 PU 学习数据流分类的入侵检测方法
入侵检测
集成分类
数据流
学习
基于堆叠集成的数据流分类
堆叠集成
数据流分类
概念漂移
一种实现混合属性数据流聚类的算法
混合属性数据
相似性
k - 近邻算法
k - 均值聚类
分类属性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种用于数据流自适应分类的主动学习方法
来源期刊 南京大学学报(自然科学版) 学科 工学
关键词 数据流 概念漂移 主动学习 自适应分类
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 67-73
页数 7页 分类号 TP391
字数 4665字 语种 中文
DOI 10.13232/j.cnki.jnju.2020.01.008
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢永芳 中南大学信息科学与工程学院 101 578 12.0 18.0
2 王国胤 重庆邮电大学计算智能重庆市重点实验室 212 6947 36.0 79.0
3 于洪 重庆邮电大学计算智能重庆市重点实验室 61 1645 13.0 40.0
4 张银芳 重庆邮电大学计算智能重庆市重点实验室 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (5)
参考文献  (19)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(1)
  • 二级参考文献(0)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(2)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据流
概念漂移
主动学习
自适应分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京大学学报(自然科学版)
双月刊
0469-5097
32-1169/N
江苏省南京市南京大学
chi
出版文献量(篇)
2526
总下载数(次)
6
总被引数(次)
23071
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导