原文服务方: 探测与控制学报       
摘要:
针对应用并行,Bar Shalom-Campo等融合算法实现多传感器对机动目标的融合跟踪时,经典的交互多模型(IMM)无法提供目标运动模型这个先验信息的问题,提出一种机动目标跟踪的多传感器分层加权融合算法,该算法通过分层加权得到多种融合算法所需的目标运动模型信息,最后使用扩展卡尔曼滤波器(EKF)对状态预测和量测进行融合估计,实现了多传感器对机动目标的融合跟踪.仿真实验表明,和单传感器相比,所提算法显著提升了机动目标的跟踪精度.
推荐文章
基于多传感器数据融合的机动目标跟踪算法研究
多传感器系统
数据融合
机动目标跟踪
IMM
α-β滤波算法
动态加权和测量方差时变的多传感器融合算法
多传感器融合
测量方差
Kalman滤波
基于多传感器融合的运动目标跟踪算法
传感器融合
运动目标跟踪
信息采集
运动目标背景建模
基于多传感器的多模型机动目标跟踪算法设计
目标跟踪
多模型算法
多传感器平台
数据融合
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 机动目标跟踪的多传感器分层加权融合算法
来源期刊 探测与控制学报 学科
关键词 机动目标 交互多模型 多传感器融合 分层加权
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 12-16
页数 5页 分类号 TP202
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯西安 西北工业大学航海学院 76 354 10.0 14.0
2 薛昱 西北工业大学航海学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (35)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(0)
  • 二级参考文献(1)
1961(1)
  • 参考文献(1)
  • 二级参考文献(0)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(4)
  • 参考文献(0)
  • 二级参考文献(4)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(5)
  • 参考文献(0)
  • 二级参考文献(5)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(9)
  • 参考文献(3)
  • 二级参考文献(6)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
机动目标
交互多模型
多传感器融合
分层加权
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
探测与控制学报
双月刊
1008-1194
61-1316/TJ
16开
1979-01-01
chi
出版文献量(篇)
2424
总下载数(次)
0
总被引数(次)
12559
论文1v1指导