基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对养殖行业中动物很难适应耳标的问题,采用非入侵的识别方式进行猪脸识别,提出了基于加权稀疏低秩组件编码的猪脸识别算法.应用视网膜皮层理论与区域协方差滤波器来估计光照,并结合文中新算法提出自适应伽马校正方法对获取的反射分量进行增强,以减少光照对识别结果的影响;同时,采用训练样本中的低秩组件构建字典矩阵,并重构残差函数处理误差,以提升算法应对含有污垢图像的识别性能.在JDD2017猪脸数据集上进行了光照和面部污垢验证试验,分别统计其识别率与耗时情况.结果表明:文中所提出算法显著优于传统稀疏表示方法,具有容忍光照变化、污垢和训练耗时短的优点.
推荐文章
基于小波变换的加权特征脸识别算法
人脸识别
小波变换
K-L变换
特征脸
基于稀疏与低秩的核磁共振图像重构算法
核磁共振成像
低秩
稀疏
赤池信息量准则
奇异值分解
全变分
基于低秩矩阵恢复的DOA稀疏重构方法
波达方向
非均匀噪声
低秩矩阵恢复
二阶统计量
加权l1范数
使用稀疏加权平均脸及对称脸解决单样本问题
模式识别
人脸识别
稀疏表示方法
人脸单样本问题
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于加权稀疏低秩组件编码的猪脸识别算法
来源期刊 江苏大学学报(自然科学版) 学科 工学
关键词 猪脸识别 稀疏表示分类 低秩分解 Retinex 残差函数
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 314-320
页数 7页 分类号 TP391
字数 5236字 语种 中文
DOI 10.3969/j.issn.1671-7775.2020.03.011
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 毛启容 江苏大学计算机科学与通信工程学院 35 260 9.0 14.0
3 詹永照 江苏大学计算机科学与通信工程学院 189 1744 21.0 31.0
4 成科扬 江苏大学计算机科学与通信工程学院 32 282 7.0 16.0
8 孙家傲 江苏大学计算机科学与通信工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (126)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1964(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1977(1)
  • 参考文献(0)
  • 二级参考文献(1)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(3)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
猪脸识别
稀疏表示分类
低秩分解
Retinex
残差函数
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
江苏大学学报(自然科学版)
双月刊
1671-7775
32-1668/N
大16开
江苏省镇江市梦溪园巷30号
28-83
1980
chi
出版文献量(篇)
2980
总下载数(次)
2
总被引数(次)
31026
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导