提出一种基于BERT(bidirectional encoder representations from transformers)和TextRank关键词提取的实体链接方法.将B E RT预训练语言模型引入实体链接任务,进行实体指称上下文和候选实体相关信息的关联度分析,通过提升语义分析的效果来增强实体链接的结果.采用TextRank关键词提取技术增强目标实体综合描述信息的主题信息,增强文本相似度度量的准确性,从而优化模型效果.使用CCKS2019评测任务二的数据集对模型效果进行验证,实验结果表明,所提方法的实体链接效果明显优于其他实体链接方法,能有效解决实体链接问题.