基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
飞机图像识别一直是航空领域识别各类飞机进行有效支援或侦察的重要一环,目前飞机图像识别常受到飞机姿态不同、图像模糊、拍摄角度各异的影响.传统的图像识别方法对于飞机图像具有一定的局限性,易受到背景环境影响,当图像中含有其他显著性目标时易失效,若进行目标分割运算量巨大,在现代化防控体系中,需要既快又好的方法精准识别飞机的机型.随着深度学习的出现,众多模式识别领域中问题得到解决,但深度学习需要大量样本对网络进行微调、参数优化,而目前公开的飞机图像数据库十分有限,图像背景差异巨大,因此提出了一种基于小样本、多背景下使用卷积神经网络进行飞机图像识别的方法.
推荐文章
基于卷积神经网络的小样本树皮图像识别方法
树皮图像
卷积神经网络
Inception_v3
小样本
基于支持向量机的飞机图像识别算法
飞机图像识别
支持向量机
特征向量
神经网络
基于Radon变换的图像识别研究
Radon变换
不变量
奇异值分解
基于Hadoop平台的图像识别
字符识别
Hadoop平台
图像识别
数据交换时间
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于小样本多背景下的飞机图像识别研究
来源期刊 电脑编程技巧与维护 学科
关键词 飞机图像识别 卷积神经网络 HoG特征
年,卷(期) 2020,(4) 所属期刊栏目 图形处理与多媒体技术
研究方向 页码范围 142-144
页数 3页 分类号
字数 2688字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李博 中国航空工业集团公司西安航空计算技术研究所 5 6 1.0 2.0
2 杨敬宝 中国航空工业集团公司西安航空计算技术研究所 5 11 2.0 3.0
3 兰天 中国航空工业集团公司西安航空计算技术研究所 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (11)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(5)
  • 参考文献(0)
  • 二级参考文献(5)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
飞机图像识别
卷积神经网络
HoG特征
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑编程技巧与维护
月刊
1006-4052
11-3411/TP
大16开
北京市海淀区长春桥路5号六号楼1209室
82-715
1994
chi
出版文献量(篇)
14554
总下载数(次)
80
总被引数(次)
25630
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导