基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了进一步提高人脸表情识别算法的准确性,提出一种融合双编码局部二值模式(DCLBP)算子和绝对梯度直方图(HOAG)算子的人脸表情识别方法,该方法首先利用DCLBP算子提取人脸图像的局部纹理特征,利用HOAG算子提取人脸图像的局部形状特征;然后,采用典型相关分析法(CCA)融合所提取的两种特征;最后,利用支持向量机(SVM)进行人脸表情分类.实验结果表明,与单一特征识别方法和级联特征识别方法相比,本文方法获得了更好的识别效果,在CK (Cohn-Kanade)和JAFFE数据集上的实验分别达到了100%和99.05%的识别率,与其他相关方法的比较也验证了其有效性.
推荐文章
基于多特征融合的人脸表情识别
表情识别
均值主元分析
线性判别
支持向量机
结合LBP特征和深度学习的人脸表情识别
图像处理
LBP特征
人脸检测
卷积神经网络
人脸表情识别
基于稀疏表示与特征融合的人脸识别方法
人脸识别
稀疏表示
低秩恢复
特征融合
鲁棒性
泛化性能
基于CBP-TOP特征的人脸表情识别
人脸表情识别
人脸检测
尺度归一化
CBP-TOP特征
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合DCLBP和HOAG特征的人脸表情识别方法
来源期刊 电子测量与仪器学报 学科 工学
关键词 人脸表情识别 双编码局部二值模式 绝对梯度方向直方图 典型相关分析
年,卷(期) 2020,(2) 所属期刊栏目 学术论文
研究方向 页码范围 73-79
页数 7页 分类号 TP391.4
字数 语种 中文
DOI 10.13382/j.jemi.B1901968
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (137)
共引文献  (174)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(11)
  • 参考文献(0)
  • 二级参考文献(11)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(13)
  • 参考文献(0)
  • 二级参考文献(13)
2010(16)
  • 参考文献(0)
  • 二级参考文献(16)
2011(12)
  • 参考文献(1)
  • 二级参考文献(11)
2012(14)
  • 参考文献(0)
  • 二级参考文献(14)
2013(13)
  • 参考文献(1)
  • 二级参考文献(12)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(9)
  • 参考文献(1)
  • 二级参考文献(8)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(11)
  • 参考文献(5)
  • 二级参考文献(6)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸表情识别
双编码局部二值模式
绝对梯度方向直方图
典型相关分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子测量与仪器学报
月刊
1000-7105
11-2488/TN
大16开
北京市东城区北河沿大街79号
80-403
1987
chi
出版文献量(篇)
4663
总下载数(次)
23
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导