基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有轴承故障诊断技术存在以下问题:①传统诊断方法需要人工提取特征,耗时长,诊断结果不稳定;②卷积神经网络诊断方法需要大量的计算资源和较长的训练时间,与故障诊断的实时响应要求存在矛盾.针对以上问题,提出一种云/边缘协同的实时轴承故障诊断方案.经过实验验证,该方案在拥有少量样本情况下与不进行云/边缘协同相比可大幅提高诊断准确率,并节约大量的训练时间.通过改进的轴承故障诊断算法达到了较高的故障诊断准确性,并通过模型的迁移学习与边缘端协同,增强了故障诊断算法对个性化应用的适应性和故障诊断的实时性.
推荐文章
基于改进EEMD方法的轴承故障诊断研究
集合经验模态分解
极值波延拓
窗函数
端点效应
采用形变周期势系统的轴承故障诊断方法
故障诊断
轴承故障
随机共振
周期势系统
基于QPSO-SVM的轴承故障诊断方法
量子粒子群
支持向量机
参数优化
故障诊断
EMD分解
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 云/边缘协同的轴承故障诊断方法
来源期刊 计算机集成制造系统 学科 工学
关键词 智能故障诊断 云/边缘协同 卷积神经网络 迁移学习
年,卷(期) 2020,(3) 所属期刊栏目 数字化/智能化/网络化制造技术
研究方向 页码范围 589-599
页数 11页 分类号 TH133.3|TP206.3
字数 7166字 语种 中文
DOI 10.13196/j.cims.2020.03.002
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 胡天亮 山东大学机械工程学院 32 158 7.0 9.0
9 张文龙 山东大学机械工程学院 22 95 5.0 9.0
12 王艳洁 衢州职业技术学院信息工程学院 6 4 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (60)
共引文献  (65)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(0)
  • 二级参考文献(6)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(6)
  • 参考文献(1)
  • 二级参考文献(5)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(8)
  • 参考文献(3)
  • 二级参考文献(5)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
智能故障诊断
云/边缘协同
卷积神经网络
迁移学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机集成制造系统
月刊
1006-5911
11-5946/TP
大16开
北京2413信箱34分箱
82-289
1995
chi
出版文献量(篇)
6201
总下载数(次)
22
总被引数(次)
127830
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导