原文服务方: 计算机测量与控制       
摘要:
针对高速铁路信号设备故障发生后记录的文本数据,提出基于文本挖掘方式的高速铁路信号设备故障多级分类模型研究;提出TF-IDF词汇权重与词汇字典结合的特征表示方法实现信号设备故障文本数据的特征提取;多级分类模型中,基于Stacking集成学习思想设计单层分类模型,将循环神经网络BiGRU和BiLSTM作为初级学习器,设计权重组合计算方法作为次级学习器,将多级分类任务分解为各层单分类任务,并采用K折交叉验证训练Stacking模型;采用高速铁路自开通至十年的信号转辙机故障数据,通过对故障原因文本数据的分析,实现故障部位和故障原因的二级分类,经过K-5次训练,BiGRU较BiLSTM各评价指标都较高,经实验BiGRU分配权重为0.7,BiLSTM权重为0.3,组合加权对两个网络的输出计算,准确率提高为0.881 4,召回率提高为0.864 2;实验表明多级分类模型能够有效提升信号设备故障多级分类任务的分类评价指标,并能够保证分类结果隶属关系的正确性.
推荐文章
高速铁路动车组的柔性制造浅谈
高速铁路
动车组
柔性制造
京张高速铁路动车组灰水回用系统设计探析
灰水回用
物理吸附
碳纤过滤
基于FMECA故障分析的高速动车组制动系统RAMS研究
CRH2型高速动车组
制动系统
RAMS
故障分析
FMECA
高速铁路能源消耗影响因素的探讨
高速铁路
动车组
能源消耗
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于文本挖掘的高速铁路动车组故障多级分类研究
来源期刊 计算机测量与控制 学科
关键词 高速铁路信号设备 多级分类 Stacking集成学习 循环神经网络 多任务协作投票决策树
年,卷(期) 2020,(7) 所属期刊栏目 测试与故障诊断
研究方向 页码范围 59-63
页数 5页 分类号 TP3
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2020.07.013
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张铭 16 146 7.0 12.0
2 王志飞 10 12 3.0 3.0
3 李樊 13 26 3.0 4.0
4 高凡 中国铁道科学研究院研究生部 3 2 1.0 1.0
5 赵俊华 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (32)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(6)
  • 参考文献(2)
  • 二级参考文献(4)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(6)
  • 参考文献(0)
  • 二级参考文献(6)
2018(10)
  • 参考文献(1)
  • 二级参考文献(9)
2019(3)
  • 参考文献(1)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
高速铁路信号设备
多级分类
Stacking集成学习
循环神经网络
多任务协作投票决策树
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导