基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
利用卷积神经网络(CNN)提取水表故障特征,提出一种基于CNN的水表故障检测方法,并通过大量实验对检测模型进行参数优化.对比实验结果表明,所提方法相比于支持向量机和集成学习方法,具备更高的检测性能,且检测精度满足实用需求.
推荐文章
基于卷积神经网络的乳腺疾病检测算法
卷积神经网络
特征融合
空间金字塔池化
尺度无关
乳腺疾病检测
基于模糊神经网络的故障检测算法
网络系统
故障检测
模糊神经网络
信息熵
尺度无关的级联卷积神经网络人脸检测算法
级联卷积神经网络
空间金字塔池化
人脸检测
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的水表故障检测算法
来源期刊 福州大学学报(自然科学版) 学科 工学
关键词 故障检测 水表 卷积神经网络 特征提取
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 314-317,324
页数 5页 分类号 TP206
字数 3183字 语种 中文
DOI 10.7631/issn.1000-2243.19364
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐艺文 福州大学物理与信息工程学院 20 112 5.0 10.0
2 李贵生 5 12 1.0 3.0
3 李立春 2 0 0.0 0.0
4 王芝燕 福州大学物理与信息工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (47)
共引文献  (26)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(4)
  • 参考文献(0)
  • 二级参考文献(4)
2016(10)
  • 参考文献(0)
  • 二级参考文献(10)
2017(9)
  • 参考文献(2)
  • 二级参考文献(7)
2018(4)
  • 参考文献(3)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
故障检测
水表
卷积神经网络
特征提取
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福州大学学报(自然科学版)
双月刊
1000-2243
35-1117/N
大16开
福建省福州市大学新区学园路2号
34-27
1961
chi
出版文献量(篇)
4219
总下载数(次)
6
总被引数(次)
24665
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导