基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
随着人工智能与合成孔径雷达(synthetic aperture radar,SAR)技术的发展,基于卷积神经网络(convolutional neural network,CNN)的SAR图像自动目标识别技术取得了一定的突破.然而,由于飞机自身结构以及SAR成像机制的复杂性,在复杂环境大场景SAR图像中对飞机目标进行快速准确的检测依然存在挑战.为提升算法的检测能力,本文对现有检测算法的处理流程进行了分析与总结,并提出了一种复杂环境大场景SAR图像飞机目标快速检测算法.算法优化了整体检测流程,设计了基于灰度特征的机场区域精细化提取和基于CNN的飞机目标粗检测两大子模块,并采用了YOLOv3网络对机场区域以及飞机目标分别进行初步的提取与检测.实验结果表明,本文算法对复杂环境大场景SAR图像中的飞机目标具有高效的检测能力.
推荐文章
大场景SAR图像舰船目标快速检测
大场景SAR图像
舰船检测
快速算法
分块CFAR
积分图
基于聚类的SAR图像快速目标检测
合成孔径雷达图像
目标检测
恒虚警率检测
Mean Shift聚类
复杂大交通场景弱小目标检测技术
机器视觉
深度学习
神经网络
交通场景多目标检测
增强学习
自适应
基于RetinaNet的SAR图像舰船目标检测
合成孔径雷达(SAR)图像
舰船目标检测
深度学习
RetinaNet
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 复杂环境大场景SAR图像飞机目标快速检测
来源期刊 电波科学学报 学科 工学
关键词 飞机目标快速检测 复杂场景 合成孔径雷达(SAR) 自动目标识别(ATR) YOLOv3 卷积神经网络(CNN)
年,卷(期) 2020,(4) 所属期刊栏目 论文
研究方向 页码范围 594-602
页数 9页 分类号 TN957.52
字数 6206字 语种 中文
DOI 10.13443/j.cjors.2020040602
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 匡纲要 国防科技大学电子科学学院 112 2486 24.0 46.0
5 赵凌君 国防科技大学电子科学学院 17 285 7.0 16.0
9 赵琰 国防科技大学电子科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (26)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(2)
  • 参考文献(0)
  • 二级参考文献(2)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(11)
  • 参考文献(0)
  • 二级参考文献(11)
2015(5)
  • 参考文献(0)
  • 二级参考文献(5)
2016(12)
  • 参考文献(5)
  • 二级参考文献(7)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
飞机目标快速检测
复杂场景
合成孔径雷达(SAR)
自动目标识别(ATR)
YOLOv3
卷积神经网络(CNN)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电波科学学报
双月刊
1005-0388
41-1185/TN
大16开
河南市新乡138信箱3分箱
36-260
1986
chi
出版文献量(篇)
3417
总下载数(次)
11
总被引数(次)
30224
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导