基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了探索智能批阅小学生作业的可行性,以小学生英文手写体为研究对象,建立了基于关键点的CenterNet模型.首先,针对低显存环境下CenterNet模型的构造与学习,提出了一种新的以组规范化(GN)替换批量规范化(BN)的池化模块结构改造方案,得到了改造版CenterNet模型;之后,将改造版CenterNet模型用于小学生英文手写体区域检测,实现了基于深度学习的英文手写体区域检测.将改造版CenterNet模型与原始CenterNet模型和CornerNet-Lite基准模型进行检测比较.实验表明:2种版本CenterNet模型的英文手写体区域检测精度和平均召回率均高于基准模型的相应值,改造版CenterNet模型的AP0.5值甚至可达到73.1%,比基准模型高出近6%;此外,相比于基准模型,改造版的CenterNet模型的漏检情况更少,并在一定程度上有效抑制了误检.改造版的CenterNet模型不仅检测性能优于原始CenterNet模型,而且其学习过程更稳定、收敛更快,这为小学生作业智能批阅方案的设计提供了有价值的解决途径.
推荐文章
基于形体特征的手写体数字识别
手写体数字
预处理
骨架搜索
模板匹配
特征匹配
基于层次分解决策树的手写体数字识别
手写体数字
识别
决策树
层次分解
基于形变卷积神经网络的手写体数字识别研究
手写体数字识别
卷积神经网络
形变卷积
基于卷积神经网络的手写体数字识别系统
卷积神经网络
手写体数字
Linux
QT
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于CenterNet的小学生英文手写体区域检测
来源期刊 河北工业科技 学科 工学
关键词 计算机神经网络 英文手写体区域检测 目标检测 CenterNet 组规范化 池化模块结构
年,卷(期) 2020,(5) 所属期刊栏目 研究与开发
研究方向 页码范围 291-299
页数 9页 分类号 TP391.4
字数 语种 中文
DOI 10.7535/hbgykj.2020yx05001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张朝晖 5 34 3.0 5.0
2 刘远铎 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (0)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(3)
  • 参考文献(2)
  • 二级参考文献(1)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
计算机神经网络
英文手写体区域检测
目标检测
CenterNet
组规范化
池化模块结构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
河北工业科技
双月刊
1008-1534
13-1226/TM
大16开
河北省石家庄市裕华东路70号
18-327
1984
chi
出版文献量(篇)
2570
总下载数(次)
4
总被引数(次)
14826
论文1v1指导