基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对使用数据手套进行数字手势识别时存在个体差异的问题,使用弯曲电阻片设计了数据手套并提出了基于神经网络的数字手势识别方法.首先,在分析测量电路原理的基础上结合弯曲电阻片的特性优选了电路参数,使手指弯曲角度测量的灵敏度最大化.其次,针对用户在手指长度、手势习惯上存在个体差异的情况,提出了一种基于弯曲信号自学习和广义回归神经网络(GRNN)的数字手势识别方法.数据手套信号测试及数字手势试验结果表明,采用优选的电路参数时测量电路的输出振幅最大;在全体评估试验和个体交叉评估试验中,经过自学习预处理后的数字手势识别平均准确率分别为99.2%和96.1%,与未进行自学习处理的识别结果相比分别提高了2.8%和10.7%.在全体评估试验和个体交叉评估试验中,GRNN的识别结果均优于决策树的识别结果.
推荐文章
基于神经网络数字识别方法的研究
数字识别
神经网络
粗糙集
特征提取
基于Leap Motion和卷积神经网络的手势识别
手势识别
高精度
Leap Motion
灰度处理
卷积神经网络
深度学习
基于Zernike矩、粗集和神经网络的数字识别方法
Zernike矩
粗糙集
特征选择
神经网络
数字识别
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于数据手套和神经网络的数字手势识别方法
来源期刊 东南大学学报(自然科学版) 学科 工学
关键词 数据手套 自学习 神经网络 数字手势识别
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 563-569
页数 7页 分类号 TP911.7|TP241
字数 4618字 语种 中文
DOI 10.3969/j.issn.1001-0505.2020.03.020
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐宝国 东南大学仪器科学与工程学院 40 575 12.0 23.0
2 陆熊 南京航空航天大学自动化学院 30 111 6.0 9.0
3 吴常铖 南京航空航天大学自动化学院 16 186 9.0 13.0
5 杨德华 南京航空航天大学自动化学院 17 23 3.0 4.0
6 费飞 南京航空航天大学自动化学院 16 32 4.0 5.0
9 曹青青 南京工业职业技术学院航空工程学院 3 0 0.0 0.0
10 曾洪 东南大学仪器科学与工程学院 8 18 2.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (53)
共引文献  (64)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(6)
  • 参考文献(0)
  • 二级参考文献(6)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(4)
  • 参考文献(1)
  • 二级参考文献(3)
2017(5)
  • 参考文献(3)
  • 二级参考文献(2)
2018(5)
  • 参考文献(1)
  • 二级参考文献(4)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
数据手套
自学习
神经网络
数字手势识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东南大学学报(自然科学版)
双月刊
1001-0505
32-1178/N
大16开
南京四牌楼2号
28-15
1955
chi
出版文献量(篇)
5216
总下载数(次)
12
总被引数(次)
71314
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导