基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以海上目标的红外、可见光图像为数据源,针对海上目标尺度多样、数据源多波段信息丰富的特点,基于YOLOv3原型网络架构,根据FPN原理将4倍降采样获取的第11层底层特征图与第103层深层特征图进行融合,实现对网络尺度的扩展,并通过K-means聚类算法得到更为精细化尺度下的先验框;同时将红外、可见光图像根据目标特点按比例进行组合,形成图像源的物理层融合,进而构建混合数据集进行多波段协同模型训练.实验结果表明,S4-YOLO网络模型其识别的准确率高于YOLOv3、YOLOv3-Tiny模型,可以很好地适应海上多尺度目标的识别需求.
推荐文章
基于改进YOLO v5的巡更安全风险识别方法研究
瓦斯电站
安全帽
YOLO v5
安全防护
经济性
基于D-S证据理论的红外小目标识别方法
证据理论
目标识别
信息融合
红外目标
基于特征差异的彩色目标快速识别方法
机器人视觉
彩色目标
特征差异
实时性
基于多传感器数据融合的目标识别方法
目标识别
D-S理论
数据融合系统(DFS)
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于S4-YOLO的海上目标检测识别方法
来源期刊 光学与光电技术 学科 工学
关键词 海上目标 深度学习 卷积神经网络 检测识别 多尺度
年,卷(期) 2020,(4) 所属期刊栏目 图像与信号处理
研究方向 页码范围 38-46
页数 9页 分类号 TP18
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (40)
共引文献  (11)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(8)
  • 参考文献(0)
  • 二级参考文献(8)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(7)
  • 参考文献(6)
  • 二级参考文献(1)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
海上目标
深度学习
卷积神经网络
检测识别
多尺度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学与光电技术
双月刊
1672-3392
42-1696/O3
大16开
武汉市阳光大道717号
38-335
2003
chi
出版文献量(篇)
2142
总下载数(次)
3
总被引数(次)
9791
论文1v1指导