基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
词向量是词的低维稠密实数向量表示,在自然语言处理的各项任务中都扮演了重要角色.目前词向量大多都是通过构造神经网络模型,在大规模语料库上以无监督学习的方式训练得到,这样的模型存在着两个问题:一是低频词词向量的语义表示质量较差;二是忽视了知识库可以对该模型提供的帮助.该文提出了利用知网相关概念场来提升词向量语义表示质量的模型.实验结果表明,在词语相似度任务、词语相关度任务和词语类比任务上,该模型使得斯皮尔曼相关性系数和准确率都得到了显著的提升.
推荐文章
一种基于知网的中文词义消歧算法
词义消歧
语义相似度
知网
基于分布的中文词表示研究
分布表示
语义相似度
逐点互信息
基于混合聚类的中文词聚类
词聚类
层次聚类
概念聚类
混合聚类
知网的形式概念分析及概念相似度研究
知网
形式概念分析
概念相似度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于知网相关概念场的中文词向量
来源期刊 中文信息学报 学科 工学
关键词 词向量 知网相关概念场 低频词 神经网络语言模型
年,卷(期) 2020,(3) 所属期刊栏目 语言分析与计算
研究方向 页码范围 13-22
页数 10页 分类号 TP391
字数 6576字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡东风 沈阳航空航天大学人机智能研究中心 105 916 14.0 27.0
2 冯煜博 沈阳航空航天大学人机智能研究中心 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (24)
共引文献  (24)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1954(2)
  • 参考文献(1)
  • 二级参考文献(1)
1995(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(2)
  • 参考文献(2)
  • 二级参考文献(0)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
词向量
知网相关概念场
低频词
神经网络语言模型
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中文信息学报
月刊
1003-0077
11-2325/N
16开
北京海淀区中关村南四街4号
1986
chi
出版文献量(篇)
2723
总下载数(次)
5
总被引数(次)
45413
论文1v1指导